Ta có đẳng thức: \(a^{102}+b^{102}=\left(a^{101}+b^{101}\right)\left(a+b\right)-ab\left(a^{100}+b^{100}\right)\) với mọi số a,b
Kết hợp với: \(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)
\(\Rightarrow1=\left(a+b\right)-ab\Leftrightarrow\left(a-1\right)\left(b-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\Rightarrow1+b^{100}=1+b^{101}=1+b^{102}\Rightarrow b=1\\b=1\Rightarrow1+a^{100}=1+a^{101}=1+a^{102}\Rightarrow a=1\end{matrix}\right.\)
Do đó: \(P=a^{2014}+b^{2014}=1^{2004}+1^{2005}=2\)