Cho \(B\in Z;b< 1.\)CMR:\(\frac{1}{b}-\frac{1}{b+1}< \frac{1}{b^2}< \frac{1}{b-1}-\frac{1}{b}\)
Cho tập A = { x \(\in Z\) | x = 15k; k \(\in Z\) } và B = { \(x\in Z\) | x = 5m; m \(\in Z\) }. Khẳng định nào sau đây là đúng?
A. B \(\subset A\) B. A ko là tập con của B C. A = B D. A là tập con của B
Cho `2` tập hợp `A={x in Z` | `x > m }` và `B= {x in Z ` | ` x <= (2m-1)/3}` với `m in Z`. TÌm `m` để \(A\cap B\)
\(A\cap B=\left\{{}\begin{matrix}x>m\\x\le\dfrac{2m-1}{3}\end{matrix}\right.\left(1\right)\)
\(TH1:m< \dfrac{2m-1}{3}\)
\(\Leftrightarrow m-\dfrac{2m-1}{3}< 0\)
\(\Leftrightarrow\dfrac{m-1}{3}< 0\)
\(\Leftrightarrow m< 1\)
\(\left(1\right)\Leftrightarrow A\cap B=\left\{x\in Z|m< x\le\dfrac{2m-1}{3}\right\}\)
\(TH2:m>\dfrac{2m-1}{3}\)
\(\Leftrightarrow m-\dfrac{2m-1}{3}>0\)
\(\Leftrightarrow\dfrac{m-1}{3}>0\)
\(\Leftrightarrow m>1\)
\(\left(1\right)\Leftrightarrow A\cap B=\varnothing\)
Các phát biểu sau đúng hay sai? Nếu sai hãy phát biểu lại cho đúng.
a) \( - 4 \in \mathbb{Z}\) b) \(5 \in \mathbb{Z}\) c) \(0 \in \mathbb{Z}\)
d) \( - 8 \in \mathbb{N}\) e) \(6 \in \mathbb{N}\) g) \(0 \in \mathbb{N}\)
Phát biểu a : Đúng, vì \( - 4\) là số nguyên âm nên nó là số nguyên.
Phát biểu b: Đúng, vì 5 là số nguyên dương nên nó là số nguyên.
Phát biểu c: Đúng, vì 0 là số nguyên.
Phát biểu d: Sai, vì \( - 8\) là số nguyên âm, không phải là số tự nhiên.
Phát biểu e: Đúng, vì 6 là số tự nhiên.
Phát biểu f: Đúng, vì 0 là số tự nhiên.
Cho: E={x\(\in\)Z| |x|≤5}, A={x\(\in\)R|x2+3x-4=0}, B={x\(\in\)Z|(x-2)(x+1)(2x2-x-3)=0}
Tìm CE(A\(\cap\)B), CE(A\(\cup\)B)
Lời giải:
$E=\left\{-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}$
$A=\left\{1; -4\right\}$
$B=\left\{-1; 2\right\}$
Do đó:
$A\cup B = \left\{-4; -1; 1;2\right\}$
$C_E(A\cup B)=\left\{-5;-3;-2; 0;3;4;5\right\}$
$A\cap B = \varnothing$
$C_E(A\cap B)=E$
cho A={3k+2|k\(\in\)Z}; B={6m+2|m\(\in\)Z}
a) chứng minh rằng 2\(\in\)A, 7\(\notin\)B. số 18 có thuộc tập hợp A hay không?
b) chứng minh rằng \(B\subset A\).
a) - Để chứng minh rằng 2 ∈ A, ta cần tìm một số nguyên k sao cho 3k + 2 = 2. Thấy ngay k = 0 là thỏa mãn, vì 3*0 + 2 = 2. Vậy 2 ∈ A.- Để chứng minh rằng 7 ∉ B, ta cần chứng minh rằng không tồn tại số nguyên m để 6m + 2 = 7. Giả sử tồn tại m, ta có 6m = 5, nhưng đây là một phương trình vô lý vì 6 không chia hết cho 5. Vậy 7 ∉ B.- Để kiểm tra xem số 18 có thuộc tập hợp A hay không, ta cần tìm một số nguyên k sao cho 3k + 2 = 18. Giải phương trình này, ta có 3k = 16, vì 3 không chia hết cho 16 nên không tồn tại số nguyên k thỏa mãn. Vậy số 18 không thuộc
Cho a,b,c \(\in\) Z và \(\frac{a^{2+1}}{ab-1}\in Z\). Chúng minh rằng \(\frac{b^2+1}{ab-1}\in Z\)
Lời giải:
Vì \(\frac{a^2+1}{ab-1}\in\mathbb{Z}\)
\(\Rightarrow a^2+1\vdots ab-1\)
$\Rightarrow b(a^2+1)\vdots ab-1$
$\Leftrightarrow a(ab-1)+a+b\vdots ab-1$
$\Leftrightarrow a+b\vdots ab-1$
$\Rightarrow (a+b)^2\vdots ab-1$
$\Leftrightarrow (a^2+1)+(b^2+1)+2(ab-1)\vdots ab-1$
$\Rightarrow b^2+1\vdots ab-1$ (do $a^2+1\vdots ab-1; 2(ab-1)\vdots ab-1$)
Do đó $\frac{b^2+1}{ab-1}\in\mathbb{Z}$
Ta có đpcm.
Cho B=2x+5/2x-1. Tìm x\(\in\)Z để:
a)B là phân số
b)với x ở câu a,tìm x để B\(\in\)Z,B có giá trị lớn nhất, B có giá trị nhỏ nhất.
các bạn có ai học sách toán đại hình nâng cao ko ??
tiện thể giúp tớ 2 bài này nha.
BÀI 1: cho hai đoạn A=[a;a+2] và B=[b;b+1]
các số a,b cần thỏa mãn điều kiện gì để "A giao B = rỗng'' (cái này viết bằng kí hiệu)
BÀI 2: cho
\(A=\left\{n\in Z\backslash n=2k,k\in Z\right\}\)
B là tập hợp các số nguyên có chữ số tận cùng là 0,2,4,6,8
\(C=\left\{n\in Z\backslash n=2k-2,k\in Z\right\}\)
\(D=\left\{n\in Z\backslash n=3k+1,k\in Z\right\}\)
chứng minh rằng A=B , A=C , A \(\ne\)B
Cho \(A=\frac{3x+2}{x-3}\)và \(B=\frac{x^2+3x-7}{x+3}\)
a) Tính A khi x = 1 , x = 2 , x = \(\frac{5}{2}\)
b) Tìm x \(\in\)Z để A \(\in\)Z
c) Tìm \(x\in Z\)để B \(\in\)Z
d) Tìm \(x\in Z\)để A và B cùng \(\in Z\)
a, Với x = 1 thì \(A=\frac{3x+2}{x-3}=\frac{3\cdot1+2}{1-3}=\frac{5}{-2}=\frac{-5}{2}\)
Với x = 2 thì \(A=\frac{3x+2}{x-3}=\frac{3\cdot2+2}{2-3}=\frac{8}{-1}=-\frac{8}{1}=-8\)
Với x =\(\frac{5}{2}\)thì : \(A=\frac{3x+2}{x-3}=\frac{3\cdot\frac{5}{2}+2}{\frac{5}{2}-3}=\frac{\frac{15}{2}+2}{\frac{5}{2}-3}=\frac{\frac{19}{2}}{-\frac{1}{2}}=\frac{19}{2}\cdot(-2)=\frac{19}{1}\cdot(-1)=-19\)
b, Ta có : \(\frac{3x+2}{x-3}=\frac{3x-9+11}{x-3}=\frac{3(x-3)+11}{x-3}=3+\frac{11}{x-3}\)
\(\Leftrightarrow11⋮x-3\Leftrightarrow x-3\inƯ(11)=\left\{\pm1;\pm11\right\}\)
Lập bảng :
x - 3 | 1 | -1 | 11 | -11 |
x | 4 | 2 | 14 | -8 |
c,Để suy nghĩ đã
Làm tiếp :v
c, \(B=\frac{x^2+3x-7}{x+3}=\frac{x(x+3)-7}{x+3}=x-\frac{7}{x+3}\)
\(\Rightarrow7⋮x+3\Leftrightarrow x+3\inƯ(7)=\left\{\pm1;\pm7\right\}\)
Lập bảng :
x + 3 | 1 | -1 | 7 | -7 |
x | -2 | -4 | 4 | -10 |
d, Tương tự