Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vi Vu
Xem chi tiết
trường nguyễn mạnh
Xem chi tiết
Ichigo
Xem chi tiết
Kudo Shinichi
20 tháng 2 2020 lúc 9:15

Bài 1 : 

Áp dụng Cô - si ta có :
\(\frac{a+1}{b^2+1}=\left(a+1\right)-\frac{\left(a+1\right)b^2}{b^2+1}\le\left(a+1\right)-\frac{\left(a+1\right)b^2}{2b}\)\(=\left(a+1\right)-\frac{ab+b}{2}\)

Tương tự ta cũng có : \(\frac{b+1}{c^2+1}\le\left(b+1\right)-\frac{bc+c}{2};\frac{c+1}{a^2+1}\le\left(c+1\right)-\frac{ca+a}{2}\)

Cộng vế theo vế ta được: 

\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)\(\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)

\(\ge6-\frac{ab+bc+ca+3}{2}\)

Mặt khác ta có BĐT : \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Leftrightarrow ab+bc+ca\le3\)

Do đó : \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\)

Dấu " = "  xảy ra khi và chỉ khi \(a=b=c=1\)

Khách vãng lai đã xóa
Kudo Shinichi
20 tháng 2 2020 lúc 9:37

Bài 2 : 

A B C D M N P Q O K I H

a) Ta có : \(MI=MA,QI=QD\)nên \(MQ\)là đường trung bình \(\Delta AID\) 

\(\Rightarrow MQ//AD\)

Tương tự NP là đường trung bình của \(\Delta BIC\)

\(\Rightarrow NP//BC\)

Do đó : \(NMQ=BAD=NPQ\)nên tứ giác MPNQ nội tiếp

b ) Kẻ \(OH\perp AB\)tại H và \(OK\perp CD\)tại K

Ta có : \(AB\perp CD\)

\(\Rightarrow OHIK\)là hình chữ nhật

Do đó \(AB^2+CD^2=4\left(BH^2+CK^2\right)=4\left(R^2-OH^2+R^2-OK^2\right)\)

\(=4\left(2R^2-OI^2\right)\)

Diện tích tứ giác MPNQ là : \(\frac{MN.PQ}{2}=\frac{AB.CD}{8}\le\frac{\left(AB+CD\right)^2}{16}=\frac{2R^2-OI^2}{4}\)không đổi

GTLN của diện tích tứ giác MNPQ là : \(\frac{2R^2-OI^2}{4}\), khi đó \(AB=CD\)

Chúc bạn học tốt !!!

Khách vãng lai đã xóa
LT丶Hằng㊰
30 tháng 11 2020 lúc 21:14

Bài 2 :

A B C D M P Q N K I H O

a) Ta có : MQ là đường trung bình của tam giác AID

\(\Rightarrow MQ//AD\Rightarrow\widehat{DAB}=\widehat{QMN}\) tương tự \(\widehat{BCD}=\widehat{NPQ}\)

Có \(\widehat{DAB}=\widehat{BCD}\)( Hai góc nối tiếp cùng chắn 1 cung )

\(\Rightarrow\widehat{QMN}=\widehat{NPQ}\)

=> Tứ giác MNPQ nội tiếp

Vậy 4 điểm M , N , P , Q cùng thuộc 1 đường tròn

Vì \(AB\perp CD\)nên \(S_{MNPQ}=\frac{1}{2}.MN.PQ=\frac{1}{8}.AB.CD\le\frac{1}{16}.\left(AB^2+CD^2\right)\)

Kẻ \(OH\perp AB\)tại H , \(OK\perp CD\)tại K , ta có :

\(AB^2+CD^2=4\left(AH^2+CK^2\right)=4\left(R^2-OH^2+R^2-OK^2\right)\)

                         \(=4\left(2R^2-KH^2\right)=4\left(2R^2-OI^2\right)\)

\(\Rightarrow S_{MNPQ}\le\frac{1}{4}\left(2R^2-OI^2\right)\)( không đổi )

Vậy diện tích tam giác MNPQ đạt giá trị lớn nhất bằng \(\frac{1}{4}\left(2R^2-OI^2\right)\)đạt được khi và chỉ khi \(AB=CD\Leftrightarrow OH=OK\Leftrightarrow OKIH\)là hình vuông

<=> AB và CD lập với OI các góc bằng 45o

Khách vãng lai đã xóa
Yến Hoàng Nguyễn Đỗ
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 1 2017 lúc 11:45

vương phong
Xem chi tiết
Cô Hoàng Huyền
25 tháng 4 2016 lúc 16:01

o A B M C D I

a. Do I là trung điểm dây cung BC nên ta có \(\widehat{OIC}=90^0\). Xét tứ giác MOCI có \(\widehat{CMO}+\widehat{CIO} =90^0+90^0=180^0\)  nên tứ giác MOIC là tứ giác nội tiếp đường tròn đường kính CO.

b. Do D là điểm chính giữa cung AB nên \(DO \perp AB\), mà  \(CM \perp AB\)  nên \(DO \parallel CM\). Từ đó dễ thấy \(dtCMD=dtCMO\).

\(\frac{1}{2}CM.MO\le\frac{1}{2}\frac{CM^2+OM^2}{2}=\frac{1}{4}OC^2=\frac{R^2}{4}\)

Vậy diện tích tam giác MCD lớn nhất bằng \(\frac{R^2}{4}\) khi \(OM=\frac{R}{\sqrt{2}}\)

Chúc em học tốt ^^

Khiêm Nguyễn Gia
Xem chi tiết
Lê Song Phương
29 tháng 10 2023 lúc 22:37

 a) Tam giác ABM vuông tại A có đường cao AC nên \(BC.BM=BA^2\). CMTT, \(BD.BN=BA^2\) nên \(BC.BM=BD.BN\Leftrightarrow\dfrac{BM}{BD}=\dfrac{BN}{BC}\). Từ đây dễ dàng suy ra \(\Delta BNM~\Delta BCD\left(c.g.c\right)\) (đpcm)

 b) Ta có OQ//BN, OP//BM, mà \(MB\perp NB\) nên suy ra \(OP\perp BN\), từ đó O là trực tâm tam giác BPN.\(\Rightarrow ON\perp BP\)

 Lại có \(QH\perp BP\) nên QH//ON.

Tam giác AON có Q là trung điểm AN, QH//ON nên H là trung điểm OA \(\Rightarrow AH=\dfrac{OA}{2}=\dfrac{R}{2}\) không đổi.

2moro
Xem chi tiết
An Thy
1 tháng 7 2021 lúc 9:00

a) Vì AB là đường kính \(\Rightarrow\angle ANB=90\)

\(\Rightarrow\angle FNB+\angle FCB=90+90=180\Rightarrow BCFN\) nội tiếp

b) Vì AB là đường kính \(\Rightarrow\angle ADB=90\) 

Xét \(\Delta ACE\) và \(\Delta ADB:\) Ta có: \(\left\{{}\begin{matrix}\angle ADB=\angle ACE=90\\\angle BAEchung\end{matrix}\right.\)

\(\Rightarrow\Delta ACE\sim\Delta ADB\left(g-g\right)\Rightarrow\dfrac{AC}{AD}=\dfrac{AE}{AB}\Rightarrow AD.AE=AB.AC\)

undefined

Nguyễn Minh Quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 4 2023 lúc 9:15

a: góc BNA=1/2*180=90 độ

góc FNB+góc FCB=180 độ

=>FCBN nội tiếp

b: góc ADB=1/2*180=90 độ

Xét ΔADB vuông tạiD và ΔACE vuông tại C có

góc A chung

=>ΔADB đồng dạng với ΔACE
=>AD/AC=AB/AE

=>AC*AB=AD*AE

c: Xét ΔEAB có

EC,AN là đường cao

EC cắt AN tại F

=>F là trực tâm

=>BF vuông góc AE

mà BD vuông góc AE

nên B,F,D thẳng hàng