Tìm số hữu tỉ a,b thỏa mãn 3/a+b$\sqrt{3}$ - 2/a-b$\sqrt{3}$ = 7-20$\sqrt{3}$
tìm số hữu tỉ a,b thỏa mãn \(\frac{3}{a+b\sqrt{3}}-\frac{2}{a-b\sqrt{3}=7-20\sqrt{3}}\)có giá trị nguyên
sr nha này : \(\frac{3}{a+\sqrt{3}}-\frac{2}{a-b\sqrt{3}}=7-20\sqrt{3}\)tìm a,b hữu tỉ
Cho 3 số hữu tỉ a, b, c thỏa mãn \(a+b\sqrt{5}+c\sqrt{6}=1\). Tìm a, b, c
Cho 3 số hữu tỉ a,b,c thỏa mãn \(a+b\sqrt{5}+c\sqrt{6}=1\). Tìm a,b,c.
Tìm các số hữu tỉ a,b thỏa mãn \(\frac{5}{a+b\sqrt{2}}\)- \(\frac{4}{a-b\sqrt{2}}\)+18\(\sqrt{2}\)=3
\(\frac{5\left(a-b\sqrt{2}\right)-4\left(a+b\sqrt{2}\right)}{a^2-2b^2}+18\sqrt{2}=3\)
\(\left(a-9b\sqrt{2}\right)+\left(a^2-2b^2\right)18\sqrt{2}=3\left(a^2-2b\right)\)
\(\sqrt{2}\left[18\left(a^2-2b^2\right)-9b\right]+a=3\left(a^2-2b\right)\)
\(\sqrt{2}\)là số vô tỷ=> \(\hept{\begin{cases}2a^2-4b^2-b=0\\3a^2-6b-a=0\end{cases}\Leftrightarrow}\) (giải hệ này ra a,b)
a) cho x=\(\sqrt[3]{20+14\sqrt{2}}\)+\(\sqrt[3]{20-13\sqrt{2}}\). tính gt biểu thức: A=(x5-x4-5x3-34x2+34x-41)2016
b) cho a,b là số hữu tỉ thỏa mãn a2+b2=4-\(\left(\frac{ab+2}{a+b}\right)^2\).cm \(\sqrt{ab+2}\)là số hữu tỉ
MK CẦN GẤP. THANKS
b) Đặt a+b=s và ab=p. Ta có: \(a^2+b^2=4-\left(\frac{ab+2}{a+b}\right)^2\Leftrightarrow\left(a+b\right)^2-2ab+\frac{\left(ab+2\right)^2}{\left(a+b\right)^2}=4\)
\(\Leftrightarrow s^2-2p+\frac{\left(p+2\right)^2}{s^2}=4\Leftrightarrow s^4-2ps^2+\left(p+2\right)^2=4s^2\)
\(\Leftrightarrow s^4-2s^2\left(p+2\right)+\left(p+2\right)^2=0\Leftrightarrow\left(s^2-p-2\right)^2=0\)
\(\Leftrightarrow s^2-p-2=0\Leftrightarrow p+2=s^2\Leftrightarrow\sqrt{p+2}=\left|s\right|\Leftrightarrow\sqrt{ab+2}=\left|a+b\right|\)
Vì a, b là số hữu tỉ nên |a+b| là số hữu tỉ. Vậy \(\sqrt{ab+2}\)là số hữu tỉ
Cho 3 số hữu tỉ a, b, c thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{c}\). CM: \(A=\sqrt{a^2+b^2+c^2}\) là số hữu tỉ
Biết \(\sqrt{5}\)là số vô tỉ. Hãy tìm các số nguyên a,b thỏa mãn :
\(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
Tìm các số hữu tỉ a,b thỏa mãn :(\(a\sqrt{5}+b\))(\(\sqrt{5}-2\))=1
Phương trình tương đương: \(5a-2a\sqrt{5}+b\sqrt{5}-2b=1\)
\(\Rightarrow\sqrt{5}\left(b-2a\right)+\left(5a-2b-1\right)=0\).
\(\Leftrightarrow\left\{{}\begin{matrix}b-2a=0\\5a-2b-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\) (thỏa mãn).
Vậy: \(\left(a;b\right)=\left(1;2\right)\)
Bài 1: Tìm các số thực x để biểu thức \(\sqrt[3]{3+\sqrt{x}}+\sqrt[3]{3-\sqrt{x}}\) là số nguyên.
Bài 2: Chứng minh rằng với mọi số tự nhiên n dương, phương trình sau không có nghiệm hữu tỷ:
\(x^2+2\left(n-1\right)\left(n+1\right)x+1-6n^3-13n^2-6n=0\)
Bài 3: Tìm các số hữu tỷ a và b thỏa mãn \(\sqrt{a\sqrt{7}}-\sqrt{b\sqrt{7}}=\sqrt{11\sqrt{7}-28}\)