Cho trước số hữu tỉ m sao cho \(\sqrt[3]{m}\) là số vô tỉ. tìm các số hữu tỉ a, b, c để \(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0\)
Bài 1 : Tìm phần nguyên của số a biết \(a=\sqrt{2}+\sqrt[3]{\dfrac{3}{2}}+\sqrt[4]{\dfrac{4}{3}}+...+\sqrt[n+1]{\dfrac{n+1}{n}}\)
Bài 2 : Cho \(x=\dfrac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}};y=\dfrac{2}{2\sqrt[3]{2}-2+\sqrt[3]{4}}\).Tính xy^3 - x^3y
Bài 3 CMR \(\sqrt{2\sqrt{3\sqrt{4.....\sqrt{2000}}}}< 3\)
Bài 4 Tồn tại hay không các số hữu tỉ a,b,c,d sao cho \(\left(a+b\sqrt{2}\right)^{1994}+\left(c+d\sqrt{2}\right)^{1994}=5+4\sqrt{2}\)
Bài 5 CMR nếu a,b,c và \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) là các số hữu tỉ thì \(\sqrt{a},\sqrt{b},\sqrt{c}\) là các số hữu tỉ
Các bạn giúp mk nha đg cần gấp,làm đc bài nào thì cmt ở dưới nha
1. Cho a,b,c là những số hữu tỉ khác 0, a=b+c
CM: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\) là 1 số hữu tỉ
2. Cho a,b,c là 3 số hữu tỉ khác nhau đôi một
CM: \(\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(a-c\right)^2}}\) là một số hữu tỉ
3. Cho a,b,c là 3 số hữu tỉ thỏa mãn ĐK ab+bc+ca=1
CM: \(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\) là một số hữu tỉ
4. Rút gọn các biểu thức
a) \(\sqrt{4-4a+a^2}-2a\)
b)\(2b-\frac{\sqrt{b^2-4b+4}}{b-2}\)
c) \(\frac{\sqrt{4x^2-4x+1}}{2x-1}-1\)
a.tìm a+b+c=2\(\sqrt{a}+2\sqrt{b-3}+2\sqrt{c}\)
b.tìm x,y,z thỏa mãn x+y+z+8=2\(\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
Tìm các số hữu tỉ a,b sao cho x=$\sqrt{2}$+1/$\sqrt{2}$-1 là nghiệm của pt: x^3+ax^2+bx+1=0
Cho biết \(\dfrac{4}{3-\sqrt{5}}=a+b\sqrt{5}\) (với a,b là các số hữu tỉ). Tính T =2a-3b
Tìm các số nguyên a;b:
\(\dfrac{3}{a+b\sqrt{3}}-\dfrac{2}{a-\sqrt{b}3}=7-20\sqrt{3}\)
Cho a,b là các số dương sao cho:
\(\dfrac{a-b\sqrt{3}}{b-c\sqrt{3}}\) là số hữu tỉ
C/m: b\(^2\) = ac
Cho \(a\), \(b\), \(c\) là 3 số thực không âm thỏa mãn: \(a+b+c=3\)
Tìm GTNN của biểu thức: \(\sqrt{3a+1}+\sqrt{3b+1}+\sqrt{3c+1}\)
(mong mọi người giúp em bằng cách chứng minh dễ nhất với các bđt quen thuộc vd côsi, bunhia...., trừ khi nếu không thể ạ) Em cảm ơn ạ!