Bài 1 : Tìm phần nguyên của số a biết \(a=\sqrt{2}+\sqrt[3]{\dfrac{3}{2}}+\sqrt[4]{\dfrac{4}{3}}+...+\sqrt[n+1]{\dfrac{n+1}{n}}\)
Bài 2 : Cho \(x=\dfrac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}};y=\dfrac{2}{2\sqrt[3]{2}-2+\sqrt[3]{4}}\).Tính xy^3 - x^3y
Bài 3 CMR \(\sqrt{2\sqrt{3\sqrt{4.....\sqrt{2000}}}}< 3\)
Bài 4 Tồn tại hay không các số hữu tỉ a,b,c,d sao cho \(\left(a+b\sqrt{2}\right)^{1994}+\left(c+d\sqrt{2}\right)^{1994}=5+4\sqrt{2}\)
Bài 5 CMR nếu a,b,c và \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) là các số hữu tỉ thì \(\sqrt{a},\sqrt{b},\sqrt{c}\) là các số hữu tỉ
Các bạn giúp mk nha đg cần gấp,làm đc bài nào thì cmt ở dưới nha
Rút gọn các biểu thức sau:
\(A=\dfrac{a^2-1}{3}\sqrt{\dfrac{9}{\left(1-a\right)^2}}\) với a < 1
\(B=\sqrt{\left(3a-5\right)^2}-2a+4\) với a < \(\dfrac{1}{2}\)
\(C=4a-3-\sqrt{\left(2a-1\right)^2}\) với a < 2
\(D=\dfrac{a-2}{4}\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\) với a < 2
* Giải phương trình
a. \(\sqrt{x^2-4x+4}=5\)
b. \(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)
* Cho biểu thức
A= \(\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\) với a>0
a. Rút gọn biểu thức A
b. Tính giá trị nhỏ nhất của A
Bài 1: Cho biểu thức A = 1 - \(\dfrac{\sqrt{x}}{1+\sqrt{x}}\), B = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)+ \(\dfrac{\sqrt{x}+2}{3-\sqrt{x}}\)- \(\dfrac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\)
(với x ≥ 0, x ≠ 4, x ≠ 9)
a, Tính giá trị của A biết x = 6-2\(\sqrt{5}\)
b, Rút gọn P = A : B
c, Tìm giá trị nhỏ nhất của P
Rút gọn các biểu thức
M = \(\sqrt{\left(3a-1\right)^2}+2a-3\) với a \(\ge\dfrac{1}{3}\)
N = \(\sqrt{\left(4-a\right)^2}-a+5\) với a > 4
I = \(\sqrt{\left(3-2a\right)^2}+2-7\) với a < \(\dfrac{3}{2}\)
K = \(\dfrac{a^2-9}{4}\sqrt{\dfrac{4}{\left(a-2\right)^2}}\) với a < 3
Cho các số thực dương a, b thỏa mãn \(2a+3b=2019\)
Chứng minh rằng : \(\sqrt{ab+2a+2b+4}+\sqrt{\left(2a+2\right)b}\le1012\)
Câu 1
a) A =3
B =\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}+2}{4-x}\) (điêu kiện:x≥0;x≠4)
b)Tim giá trị của x để B=\(\dfrac{2}{3}\)A
Cho P=\(\dfrac{\left(\dfrac{a-b}{\sqrt{a}+\sqrt{b}}\right)^3+2a\sqrt{a}+b\sqrt{b}}{3a^2+3b\sqrt{ab}}+\dfrac{\sqrt{ab}-a}{a\sqrt{a}-b\sqrt{a}}\)với a>0, b>0 và \(a\ne b\)
Chứng mình rằng P không phụ thuộc vào giá trị của a và b
1. Cho a,b,c là những số hữu tỉ khác 0, a=b+c
CM: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\) là 1 số hữu tỉ
2. Cho a,b,c là 3 số hữu tỉ khác nhau đôi một
CM: \(\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(a-c\right)^2}}\) là một số hữu tỉ
3. Cho a,b,c là 3 số hữu tỉ thỏa mãn ĐK ab+bc+ca=1
CM: \(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\) là một số hữu tỉ
4. Rút gọn các biểu thức
a) \(\sqrt{4-4a+a^2}-2a\)
b)\(2b-\frac{\sqrt{b^2-4b+4}}{b-2}\)
c) \(\frac{\sqrt{4x^2-4x+1}}{2x-1}-1\)