\(8x^3.\left(x-1\right)^3+24x^2.\left(x-1\right)^2+8x^3-351\left(x-1\right)^3=0\)
giải phương trình
\(8x^3\left(x-1\right)^3+24x^2\left(x-1\right)^2+8x^3-351\left(x-1\right)^3=0\)
\(\begin{cases}\left(5-2x\right)\sqrt{x+2y}=\left(6-x-2y\right)\sqrt{x-1}\\\left(x^3-2y-3\right)\left(x+\sqrt{4y^2-8x^2+24x+5}\right)=21\end{cases}\)
Giải phương trình:
1. \(x^3-3x^2-9x+12=0\)
2. \(x^4-x^3+18x^2-3x+9=0\)
3. \(\left(x^2-3x+3\right)^2-3x^2+8x-6=0\)
4. \(\left(2x^2-5x+1\right)^2-10x^2+24x-4=0\)
5. \(\left(x-3\right)\left(x-1\right)\left(x+2\right)\left(x+6\right)-40x^2=0\)
a. Chắc là nhầm đề, pt bậc 3 này... ko giải được (trong chương trình phổ thông VN)
b.
Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)
\(\Leftrightarrow x^2+\frac{9}{x^2}-\left(x+\frac{3}{x}\right)+18=0\)
Đặt \(x+\frac{3}{x}=t\Rightarrow x^2+\frac{9}{x^2}=t^2-6\)
Pt trở thành: \(t^2-6-t+18=0\Leftrightarrow t^2-t+12=0\) (vô nghiệm)
c.
\(\left(x^2-2x+1-\left(x-2\right)\right)^2-3x^2+8x-6=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)^2-2\left(x-2\right)\left(x^2-2x+1\right)+\left(x-2\right)^2-3x^2+8x-6=0\)
\(\Leftrightarrow\left(x-1\right)^4-2\left(x-1\right)^2\left(x-2\right)-2x^2+4x-2=0\)
\(\Leftrightarrow\left(x-1\right)^4-2\left(x-1\right)^2\left(x-2\right)-2\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^2-2x+1-2x+4-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)^3\left(x-3\right)=0\)
d.
Câu này chắc cũng nhầm đề, pt này ko giải được
e.
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)\left(x-1\right)\left(x+6\right)-40x^2=0\)
\(\Leftrightarrow\left(x^2-x-6\right)\left(x^2+5x-6\right)-40x^2=0\)
Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)
\(\Leftrightarrow\left(x-\frac{6}{x}-1\right)\left(x-\frac{6}{x}+5\right)-40=0\)
Đặt \(x-\frac{6}{x}-1=t\)
\(\Rightarrow t\left(t+6\right)-40=0\Leftrightarrow t^2+6t-40=0\) \(\Rightarrow\left[{}\begin{matrix}t=4\\t=-10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{6}{x}-1=4\\x-\frac{6}{x}-1=-10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x-6=0\\x^2+9x-6=0\end{matrix}\right.\) (bấm máy)
\(x^4-4x^3-2x^2-16x-24=0\)
Giả sử đa thức được tách về dạng:
\(\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)
Nhân phá ra ta được:
\(x^4+\left(a+c\right)x^3+\left(b+d+ac\right)x^2+\left(ad+bc\right)x+bd\)
Đồng nhất hệ số với vế trái: \(\Rightarrow\left\{{}\begin{matrix}a+c=-4\\b+d+ac=-2\\ad+bc=-16\\bd=-24\end{matrix}\right.\)
Giải hệ pt này rất tốn thời gian, nên ta sẽ xử lý tiếp bằng cách dự đoán
\(bd=-24\) nên có thể \(\left(b;d\right)=\left(2;-12\right);\left(-2;12\right);\left(4;-6\right);\left(-4;6\right);\left(1;-24\right);\left(-1;24\right)\)
Thay vào 2 pt đầu và sử dụng Viet đảo kiểm tra thấy chỉ có cặp \(\left(4;-6\right)\) thỏa mãn, khi đó (a;c)=(0;-4)
Vậy \(x^4-4x^3-2x^2-16x-24=0\)
\(\Leftrightarrow\left(x^2+4\right)\left(x^2-4x-6\right)=0\)
Tới đây ez
Cách 2: sử dụng casio
Chọn MODE-7 chế độ Table, nhập hàm \(F\left(X\right)=X^4-4X^3-2X^2-16X-24=0\)
Sau đó "=", START chọn -10 rồi "=", end chọn 10 rồi "=", step chọn 1 rồi "="
Sử dụng nút di chuyển "replay" lên xuống kiểm tra cột F(X), tìm vị trí nào F(X) đổi dấu thì nhìn sang cột X bên trái
Ví dụ ở đây ta thấy F(X) đối dấu lần 1 từ 48 sang -5 tương ứng X khoảng giữa -2 và -1, như vậy pt có 1 nghiệm X nằm giữa -2 và -1
Tiếp tục kiểm tra, lại thấy 1 nghiệm X giữa 5 và 6
Vậy là đủ, bấm MODE-1 thoát ra, nhập tiếp \(X^4-4X^3-2X^2-16X-24\) ngoài màn hình MODE-1 rồi "="
Sau đó shift+SOLVE
Máy hỏi Solve for X thì ta chọn 1 số bất kì giữa -2 và -1, ví dụ -1.5 rồi "="
Nó sẽ cho 1 nghiệm rất xấu, ko vấn đề, bấm shift+RCL (phím nằm trên số 7) rồi phím "-" (chữ A đỏ) để máy gán nghiệm vào biến A
Bấm AC, rồi bấm nút replay đi lên đến khi xuất hiện pt nhập ban đâu, tiếp tục shift+SOLVE, lần này SOLVE forX ta chọn 1 số nằm giữa 4 và 5 (ví dụ 4.5)
Được 1 nghiệm nữa, lại shift-RCL- rồi nút B đỏ (nằm kế nút A đỏ) để máy gán nghiệm vào biến B
Nhấn AC, rồi nhập alpha A+alpha B rồi "="
Nó ra 4
Tiếp tục nhập \(A\times B\) rồi "="
Nó ra -6
Vậy theo Viet đảo, A và B là nghiệm của: \(x^2-4x-6\)
Vậy thì \(x^4-4x^3-2x^2-16x-24\) có 1 nhân tử là \(x^2-4x-6\)
Tiến hành chia đa thức \(x^4-4x^3-2x^2-16x-24\) cho \(x^2-4x-6\) ta được \(x^2+4\)
Vậy \(x^4-4x^3-2x^2-16x-24=\left(x^2+4\right)\left(x^2-4x-6\right)\)
bài toán coi như xong
Tìm x:
a) \(8x^3-72x=0\)
b)\(\left(x-2\right)^2-\left(x-1\right).\left(x+3\right)=12\)
a: \(\Leftrightarrow8x\left(x-3\right)\left(x+3\right)=0\)
hay \(x\in\left\{0;3;-3\right\}\)
b: \(\Leftrightarrow x^2-4x+4-x^2-2x+3=12\)
=>-6x=5
hay x=-5/6
Tìm x<0, biết: \(\left(8x^2+3\right)\left(8x^2-3\right)-\left(8x^2-1^2\right)=54\)
Đặt 8x^2=t => t>=0
\(t^2-9-\left(t-1\right)=54\Leftrightarrow t^2-t+1-9=54\)
\(t^2-t+\frac{1}{4}=54+8+\frac{1}{4}=\frac{249}{4}\) lẻ thế nhỉ
\(\left(t-\frac{1}{2}\right)^2=\frac{249}{4}\Rightarrow\left[\begin{matrix}t=\frac{1-\sqrt{249}}{2}< 0\left(loai\right)\\t=\frac{1+\sqrt{249}}{2}\end{matrix}\right.\)
\(\left\{\begin{matrix}x< 0\\8x^2=\frac{1+\sqrt{249}}{2}\end{matrix}\right.\Rightarrow x=\frac{-\sqrt{1+\sqrt{249}}}{16}\)
d) \(^{ }4x\left(2x+3\right)-8x\left(x+4\right)\)
e) \(^{ }2x\left(5x+2\right)+\left(2x-3\right)\left(3x-1\right)\)
f) \(^{ }x\left(x+2\right)^2-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
d: Ta có: \(4x\left(2x+3\right)-8x\left(x+4\right)\)
\(=8x^2+12x-8x^2-32x\)
=-20x
e: Ta có: \(2x\left(5x+2\right)+\left(2x-3\right)\left(3x-1\right)\)
\(=10x^2+4x+6x^2-2x-9x+3\)
\(=16x^2-7x+3\)
f: Ta có: \(x\left(x+2\right)^2-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=x^3+4x^2+4x-x^3-3x^2-3x-1+3x^2-3\)
\(=4x^2+x-4\)
Giải các phương trình sau :
1. \(x^4-7x^3+6x^2+14x+4=0\)
2. \(2\left(2x^2+3x+3\right)^2+6x^2+8x+12=0\)
3. \(\left(2x^2-5x+1\right)^2-10x^2+24x-4=0\)
4. \(\left(2x+1\right)\left(2x-3\right)\left(2x-2\right)\left(2x+6\right)=100\)
5. \(\left(2x+1\right)\left(2x-3\right)\left(2x-2\right)\left(2x+6\right)=\left(x+6\right)^2\)
Casio:
a/ \(\Leftrightarrow\left(x^2-5x-2\right)\left(x^2-2x-2\right)=0\)
b/ \(\Leftrightarrow2\left(2x^2+3x+3\right)^2+6\left(x+\frac{2}{3}\right)^2+\frac{28}{3}=0\)
Vế trái luôn dương nên pt vô nghiệm
c/ Câu này đề sai, pt này ko thể tách ra được nên chắc chắn là ko giải được
d/ Câu này chắc đề cũng ko đúng: đặt \(2x-4=a\Rightarrow2x=a+4\)
\(\Rightarrow\left(a+5\right)\left(a+1\right)\left(a+2\right)\left(a+10\right)=100\)
\(\Leftrightarrow a\left(a^3+18a^2+97a+180\right)=0\)
Dù pt có nghiệm \(a=0\) nhưng pt bậc 3 đằng sau lại ko thể giải
e/ Câu này giống câu trên
\(\Leftrightarrow x\left(16x^3+16x^2-93x+12\right)=0\)
Pt bậc 3 phía sau ko giải được
a) \(x-\dfrac{\dfrac{x}{2}-\dfrac{3+x}{4}}{2}=\dfrac{2x-\dfrac{10-7x}{3}}{3}-\left(x-1\right)\)
b) \(x^2-6x-2+\dfrac{14}{x^2-6x+7}=0\)
c) \(\dfrac{8x^2}{3\left(1-4x^2\right)}=\dfrac{2x}{6x-3}-\dfrac{1+8x}{4+8x}\)
d) \(\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}=\dfrac{6}{x^2-9}\)
e) \(\left(1-\dfrac{2x-1}{x+1}\right)^3+6\left(1-\dfrac{2x-1}{x+1}\right)^2=\dfrac{12\left(2x-1\right)}{x+1}-20\)
b: Đặt \(x^2-6x-2=a\)
Theo đề, ta có: \(a+\dfrac{14}{a+9}=0\)
=>(a+2)(a+7)=0
\(\Leftrightarrow\left(x^2-6x\right)\left(x^2-6x+5\right)=0\)
=>x(x-6)(x-1)(x-5)=0
hay \(x\in\left\{0;1;6;5\right\}\)
c: \(\Leftrightarrow\dfrac{-8x^2}{3\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{8x+1}{4\left(2x+1\right)}\)
\(\Leftrightarrow-32x^2=8x\left(2x+1\right)-3\left(8x+1\right)\left(2x-1\right)\)
\(\Leftrightarrow-32x^2=16x^2+8x-3\left(16x^2-8x+2x-1\right)\)
\(\Leftrightarrow-48x^2=8x-48x^2+18x+3\)
=>26x=-3
hay x=-3/26
Giải phương trình
a) \(\dfrac{3}{5x-1}\)+ \(\dfrac{2}{3-5x}\)=\(\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)
b) \(\dfrac{5-x}{4x^2-8x}\)+\(\dfrac{7}{8x}\)=\(\dfrac{x-1}{2x\left(x-2\right)}\)+\(\dfrac{1}{8x-16}\)
a:Sửa đề: \(\dfrac{3}{5x-1}+\dfrac{2}{3-x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)
=>3x-9-10x+2=-4
=>-7x-7=-4
=>-7x=3
=>x=-3/7
b: =>\(\dfrac{5-x}{4x\left(x-2\right)}+\dfrac{7}{8x}=\dfrac{x-1}{2x\left(x-2\right)}+\dfrac{1}{8\left(x-2\right)}\)
=>\(2\left(5-x\right)+7\left(x-2\right)=4\left(x-1\right)+x\)
=>10-2x+7x-14=4x-4+x
=>5x-4=5x-4
=>0x=0(luôn đúng)
Vậy: S=R\{0;2}