Cho tam giác ABC vuông tại A, đường cao AH, HC- HB=AB
Chứng minh BC=2AB
Đang gấp giúp với ạ
Bài 1: cho tam giác ABC vuông tại A. đường cao AH. Biết HB=9cm, HC=16cm. Vẽ HM vuông góc với AB, HN vuông góc với AC. K là trung điểm của BC. chứng minh AK vuông góc với MN
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Cho BC=36cm. BH=4cm. chứng minh Tang góc B= 8 Tang góc C
giúp mk với ạ. mk cần gấp/ tks mn nhìu :3
Giúp mình với ak!!!!
1. Cho tam giác ABC vuông tại A, biết AB/AC=5/7 và đường cao AH=15cm. Tính HB, HC.
2. Cho tam giác ABC vuông tại A, có đường cao AH=14cm và HB/HC=1/4. Tính chu vi tam giác ABC.
1: AB/AC=5/7
=>HB/HC=(AB/AC)^2=25/49
=>HB/25=HC/49=k
=>HB=25k; HC=49k
ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>1225k^2=15^2=225
=>k^2=9/49
=>k=3/7
=>HB=75/7cm; HC=21(cm)
Cho tam giác ABC vuông tại A có AB = 6cm, BC = 10cm. Kẻ bd là tia phân giác của góc ABC (D ∈ AC)
a) Tính AD,DC
b) Đường cao AH (H ∈ BC) cắt BD tại I. CM AB^2 = BC.HB. Từ đó tính HB,HC
c) CMR: IH.DC = AD^2
*Mong các cao nhân giúp gấp với ạ :'(( *
b) Xét ΔABH vuông tại H và ΔCBA vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔABH\(\sim\)ΔCBA(g-g)
Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BC\cdot BH\)(đpcm)
Có gấp thế nào đi nữa thì phải đủ dữ kiện đề tụi tớ mới giúp được cậu nhé :))
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)
hay AC=8(cm)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)
mà AD+CD=AC=8cm(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)
Vậy: AD=3cm; CD=5cm
Cho tam giác ABC vuông tại A, đường cao AH=6cm, HC =8cm
a) tính độ dài HB,BC,AB,AC
b) Kẻ HD vuông góc với AC ( D thuộc AC). Tính độ dài HD và diện tích tam giác AHD
giúp mình với ạ
Áp dụng định lý Pitago cho tam giác vuông ACH:
\(AC=\sqrt{AH^2+HC^2}=10\left(cm\right)\)
Áp dụng hệ thức lượng cho tam giác vuông ABC:
\(AC^2=CH.BC\Rightarrow BC=\dfrac{AC^2}{CH}=\dfrac{25}{2}\) (cm)
\(\Rightarrow BH=BC-CH=\dfrac{9}{2}\left(cm\right)\)
Pitago tam giác vuông ABC:
\(AB=\sqrt{BC^2-AC^2}=\dfrac{15}{2}\left(cm\right)\)
b.
Áp dụng hệ thức lượng cho tam giác vuông ACH:
\(HD.AC=AH.HC\Rightarrow HD=\dfrac{AH.HC}{AC}=\dfrac{24}{5}\left(cm\right)\)
Tiếp tục là hệ thức lượng:
\(AH^2=AD.AC\Rightarrow AD=\dfrac{AH^2}{AC}=\dfrac{18}{5}\left(cm\right)\)
\(S_{AHD}=\dfrac{1}{2}AD.HD=\dfrac{216}{25}\left(cm^2\right)\)
BT1: Cho tam giác ABC vuông tại A ,đường cao AH, biết AB= 12cm, BH= 6cm.Tính AH,AC,BC,CH.
BT2: Cho tam giác ABC vuông tại A ,đường cao AH, biết \(\frac{HB}{HC}\)=\(\frac{3}{4}\). Tính AB,AC,BC.
Giair giúp mik với ạ
Bài 1 : Cho tam giác ABC vuông tại A , đường cao AH , có HB =9 cm , HC =16cm . Tính góc B và góc C
GIẢI GIÚP MÌNH BÀI NÀY VỚI Ạ , MÌNH ĐANG CẦN GẤP
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=9\cdot25=225\\AC^2=16\cdot25=400\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=15\left(cm\right)\\AC=20\left(cm\right)\end{matrix}\right.\)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{15}{25}=\dfrac{3}{5}\)
\(\Leftrightarrow\widehat{C}\simeq37^0\)
\(\Leftrightarrow\widehat{B}=53^0\)
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC)
a) Chứng minh tam giác HBA đồng dạng với tam giác ABC
b) Chứng minh AH2 = HB . HC
c) Tia phân giác của góc AHC cắt AC tại D. Chứng minh HB/HC = AD^2/DC^2
Cho tam giác ABC vuông tại A, có đường cao AH. a) Chứng minh: 4ABH v 4CAH. b) Chứng minh: AH2 = HB · HC. c) Tia phân giác của Bb cắt AH và AC lần lượt tại D và E. Vẽ EI ⊥ BC (I ∈ BC). Chứng minh: ID k AC.
giúp mình với ạ
a: Xét ΔABH vuông tại H và ΔCAH vuông tại H có
\(\widehat{ABH}=\widehat{CAH}\)
DO đó: ΔABH\(\sim\)ΔCAH
b: Ta có: ΔABH\(\sim\)ΔCAH
nên HA/HC=HB/HA
hay \(HA^2=HB\cdot HC\)
cho tam giác ABC vuông tại A, đường cao AH: chứng minh AB/AC = căn HB / căn HC
ai giúp mình với
Áp dụng HTL trong tam giác ABC vuông tại A có đường cao AH:
\(\left\{{}\begin{matrix}AB^2=HB.BC\\AC^2=HC.BC\end{matrix}\right.\)
\(\Rightarrow\dfrac{AB^2}{AC^2}=\dfrac{HB.BC}{HC.BC}=\dfrac{HB}{HC}\)
\(\Rightarrow\dfrac{AB}{AC}=\sqrt{\dfrac{HB}{HC}}\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)
hay \(\dfrac{AB}{AC}=\dfrac{\sqrt{BH}}{\sqrt{HC}}\)