cm với mọi số tự nhiên n thì \(11.5^{2n}+2^{3n+2}+2^{3n+1}\) chia hết cho 17
cm với mọi số tự nhiên n thì 11.5^2n+2^3n+2+2^3n+1 chia hết cho 17
cm với mọi số tự nhiên n thì 11.5^2n+2^3n+2+2^3n+1 chia hết cho 17
Chứng minh với mọi số tự nhiên n ta có: \(11.5^{2n}+2^{3n+2}+2^{3n+1}\) chia hết cho 17
Lời giải:
$11.5^{2n}+2^{3n+2}+2^{3n+1}=11.25^n+8^n.4+8^n.2=11.25^n+6.8^n$
Vì $25\equiv 8\pmod {17}$
$\Rightarrow 11.5^{2n}+2^{3n+2}+2^{3n+1} =11.25^n+6.8^n\equiv 11.8^n+6.8^n\equiv 17.8^n\equiv 0\pmod {17}$
Hay $11.5^{2n}+2^{3n+2}+2^{3n+1}\vdots 17$
Hay $
Chứng minh với mọi số tự nhiên n ta có: \(11.5^{2n}+2^{3n+2}+2^{3n+1}\) chia hết cho 17
Chứng minh với mọi số tự nhiên n ta có: \(11.5^{2n}+2^{3n+2}+2^{3n+1}\) chia hết cho 17
Chứng minh với mọi số tự nhiên n ta có: \(11.5^{2n}+2^{3n+2}+2^{3n+1}\) chia hết cho 17
Chứng minh với mọi số tự nhiên n ta có: \(11.5^{2n}+2^{3n+2}+2^{3n+1}\) chia hết cho 17
Sửa đề: \(11\cdot5^{2n}+2^{3n+2}+2^{3n+1}\)
Ta có: \(11\cdot5^{2n}+2^{3n+2}+2^{3n+1}\)
\(=11\cdot25^n+8^n\cdot4+8^n\cdot2\)
\(=11\cdot25^n+6\cdot8^n\)
Vì \(25\equiv8\)(mod 17)
nên \(11\cdot25^n+6\cdot8^n\equiv11\cdot8^n+6\cdot8^n\equiv17\cdot8^n\equiv0\)(mod 17)
hay \(11\cdot5^{2n}+2^{3n+2}+2^{3n+1}⋮17\)(đpcm)
CM với mọi số tự nhiên n thì 11*5\(^{2n}\)+2\(^{3n+2}\)+2\(^{3n+1}\) chia hết cho 17