tìm GTNN của bt : I x - 1 I + 2020 I x - 2 I + I x - 3 I
TÌm GTNN của biểu thức : C = I x + 2 I + I x - 4 I + 2020
`C=|x+2|+|x-4|+2020`
`=|x+2|+|4-x|+2020`
Áp dụng BĐT `|A|+|B|>=|A+B|`
`=>|x+2|+|4-x|>=|x+2+4-x|=6`
`=>C>=2020+6=2026`
Dấu "=" xảy ra khi `(x+2)(4-x)>=0<=>(x+2)(x-4)<=0<=>-2<=x<=4`
C=|x+2|+|x−4|+2020C=|x+2|+|x-4|+2020
=|x+2|+|4−x|+2020=|x+2|+|4-x|+2020
Áp dụng BĐT |A|+|B|≥|A+B||A|+|B|≥|A+B|
⇒|x+2|+|4−x|≥|x+2+4−x|=6⇒|x+2|+|4-x|≥|x+2+4-x|=6
⇒C≥2020+6=2026⇒C≥2020+6=2026
Dấu "=" xảy ra khi (x+2)(4−x)≥0⇔(x+2)(x−4)≤0⇔−2≤x≤4(x+2)(4-x)≥0⇔(x+2)(x-4)≤0⇔-2≤x≤4
Tìm GTNN của biểu thức :
A = | x - 4 | + | x - 2020 |
Ta có:
\(A=\left|x-4\right|+\left|x-2020\right|=\left|x-4\right|+\left|2020-x\right|\ge x-4+2020-x=2016\)
Dấu "=" xảy ra <=> x - 4 \(\ge0\)
và 2020 - x \(\ge0\)
<=> \(x\ge4\) và \(x\le2020\)
\(\Leftrightarrow4\le x\le2020\)
Vậy A đạt GTNN là 2016 \(\Leftrightarrow4\le x\le2020\)
Tìm GTNN của BT
1.D=x^2-x-1
2.H=9x^2-36x-136
3.I=x(x-5)
a)D=x2-x-1
\(=\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\)
Ta thấy:\(\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\ge0-\frac{5}{4}=-\frac{5}{4}\)
\(\Rightarrow D\ge-\frac{5}{4}\)
Dấu = khi x=1/2
Vậy Dmin=-5/4 <=>x=1/2
b)H=9x2-36x-136
\(=9\left(x-2\right)^2-172\)
Ta thấy:\(9\left(x-2\right)^2-172\ge0-172=-172\)
\(\Rightarrow H\ge-172\)
Dấu = khi x=2
Vậy Dmin=-172 <=> x=2
c)I=x(x-5)
\(=\frac{1}{4}\left(2x-5\right)^2-\frac{25}{4}\)
Ta thấy:\(\frac{1}{4}\left(2x-5\right)^2-\frac{25}{4}\ge0-\frac{25}{4}=-\frac{25}{4}\)
\(\Rightarrow I\ge-\frac{25}{4}\)
Dấu = khi x=5/2
Vậy Imin=-25/4 <=>x=5/2
tìm GtNN : A = I x - 1 I + I x -2 I + Ix - 3 I + Ix - 4 I + 15
Đặt `B = |x - 1| + |x - 2| + |x - 3| + |x - 4|`
`= (|x - 1| + |x - 4|) + (|x - 2| + |x - 3|)`
`= (|x - 1| + |4 - x|) + (|x - 2| + |3 - x|)`
\(\Rightarrow B\ge\left|x-1+4-x\right|+\left|x-2+3-x\right|\)
\(B\ge\left|3\right|+\left|1\right|=4\)
\(\Rightarrow A\ge4+15=19\)
hay MinA = 19
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}\left(x-1\right)\left(4-x\right)\ge0\\\left(x-2\right)\left(3-x\right)\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-4\right)\le0\\\left(x-2\right)\left(x-3\right)\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}1\le x\le4\\2\le x\le3\end{matrix}\right.\Rightarrow2\le x\le3\)
Vậy MinA = 19 tại \(2\le x\le3\).
1/ Tìm giá trị nhỏ nhất của biểu thức B= 2I3x-6I - 4
2/ Tìm x thuộc Z để biểu thức D= I x-2 I + I x-8 I đạt Gía trị nhỏ nhất
3/ Tìm GTNN của biểu thức B = I x-2017 I + I x-1 I
A= I x-2017 I + I x-2 I
4/ với giá trị nào của x,y thì biểu thức C = I x-100 I + I y+20 I - 1 có giá trị nhỏ nhất . Tìm GTNN
5/ Với giá trị nào của x thì biểu thức A= 100 - I x+5 I có giá trị lớn nhất. Tìm GTLN đó
1/ Tìm giá trị nhỏ nhất của biểu thức B= 2I3x-6I - 4
2/ Tìm x thuộc Z để biểu thức D= I x-2 I + I x-8 I đạt Gía trị nhỏ nhất
3/ Tìm GTNN của biểu thức B = I x-2017 I + I x-1 I
A= I x-2017 I + I x-2 I
4/ với giá trị nào của x,y thì biểu thức C = I x-100 I + I y+20 I - 1 có giá trị nhỏ nhất . Tìm GTNN
5/ Với giá trị nào của x thì biểu thức A= 100 - I x+5 I có giá trị lớn nhất. Tính GTLN đó
giúp với ạ ._.
1/ Gọi Bmin là GTNN của B
Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)
=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).
=> Bmin = 0.
Vậy GTNN của B = 0.
2/ Gọi Dmin là GTNN của D.
Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)
và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> Dmin = 0.
=> \(\left|x-2\right|+\left|x-8\right|=0\)
=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)
Vậy không có x thoả mãn đk khi GTNN của D = 3.
Bài 1:
A)|x-2|=5
B)|x-1|>4
Bài 2:
A=|x-1/3|+2019 đạt GTNN
B=2020.|3x-1| đạt GTLN
C=|x-1|+|x-5| đạt GTNN
Bài 1:
a) \(\left|x-2\right|=5\)
⇒ \(\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=5+2\\x=\left(-5\right)+2\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
Vậy \(x\in\left\{7;-3\right\}.\)
b) \(\left|x-1\right|>4\)
⇒ \(\left[{}\begin{matrix}x-1>4\\x-1< -4\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x>5\left(TM\right)\\x< -3\left(TM\right)\end{matrix}\right.\)
Vậy \(x>5\) hoặc \(x< -3\) thì \(\left|x-1\right|>4.\)
Mình chỉ làm bài 1 thôi nhé.
Chúc bạn học tốt!
bài 2
\(A=\left|x-\frac{1}{3}\right|+2019\)
Có: \(\left|x-\frac{1}{3}\right|\ge0với\forall x\)
\(\Rightarrow\left|x-\frac{1}{3}\right|+2019\ge2019\\ \Leftrightarrow A\ge2019\)
Dấu "=" xảy ra khi: \(\left|x-\frac{1}{3}\right|=0\Leftrightarrow x=\frac{1}{3} \)
Vậy \(A_{min}=2019\) khi \(x=\frac{1}{3}\)
\(B=2020.\left|3x-1\right|\)
Có: \(\left|3x-1\right|\ge0với\forall x\)
\(\Rightarrow2020.\left|3x-1\right|\ge0\)
\(\Leftrightarrow B\ge0\)
Dấu "=" xảy ra khi \(\left|3x-1\right|=0\Leftrightarrow x=\frac{1}{3}\)
Vậy \(B_{min}=0\) khi \(x=\frac{1}{3}\)
a) Tìm GTNN của biểu thức
B= I x - 2013 I.2 + I 2x - 2014 I
b) Tìm x,y,z
I 3x - 5 I + (5y + 7) \(^{2018}\)+ ( 2z - 3 ) \(^{2020}\)\(\le\)0
Mong a/c hoặc cô và bạn giúp đỡ mình
3/ Tìm GTNN của biểu thức B = I x-2017 I + I x-1 I
A= I x-2017 I + I x-2 I
4/ với giá trị nào của x,y thì biểu thức C = I x-100 I + I y+20 I - 1 có giá trị nhỏ nhất . Tìm GTNN
5/ Với giá trị nào của x thì biểu thức A= 100 - I x+5 I có giá trị lớn nhất. Tính GTLN đó
Tìm GTNN của biểu thức B = I x-2017 I + I x-1 I
có |x-2017|luôn\(\ge0\forall x\in Q\)
cũng có |-1|luôn\(\ge0\forall x\in Q\)
=>I x-2017 I + I x-1 I\(\ge0\forall x\in Q\)
=> I x-2017 I + I x-1 I=|x-2017|+|1-x|=|x-2017+1-x|=2016
dấu''='' xảy ra <=>(x-2017)(1-x)=0
TH1:
=>\(\orbr{\begin{cases}x-2017\ge0\\1-x\le0\end{cases}}\)
TH2:
=> \(\orbr{\begin{cases}x-2017\le0\\1-x\ge0\end{cases}}\)
tự làm típ ! xét 2 TH thấy cái nào mà nó vô lí thì đánh vô lí chọn TH còn lại nhé !