Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ha nguyen thi
Xem chi tiết
Yeutoanhoc
9 tháng 6 2021 lúc 8:09

`C=|x+2|+|x-4|+2020`
`=|x+2|+|4-x|+2020`
Áp dụng BĐT `|A|+|B|>=|A+B|`
`=>|x+2|+|4-x|>=|x+2+4-x|=6`
`=>C>=2020+6=2026`
Dấu "=" xảy ra khi `(x+2)(4-x)>=0<=>(x+2)(x-4)<=0<=>-2<=x<=4`

C=|x+2|+|x−4|+2020C=|x+2|+|x-4|+2020
=|x+2|+|4−x|+2020=|x+2|+|4-x|+2020
Áp dụng BĐT |A|+|B|≥|A+B||A|+|B|≥|A+B|
⇒|x+2|+|4−x|≥|x+2+4−x|=6⇒|x+2|+|4-x|≥|x+2+4-x|=6
⇒C≥2020+6=2026⇒C≥2020+6=2026
Dấu "=" xảy ra khi (x+2)(4−x)≥0⇔(x+2)(x−4)≤0⇔−2≤x≤4(x+2)(4-x)≥0⇔(x+2)(x-4)≤0⇔-2≤x≤4

Trà My Nguyễn Thị
Xem chi tiết
Phạm Tuấn Kiệt
29 tháng 4 2016 lúc 7:49

Ta có:

\(A=\left|x-4\right|+\left|x-2020\right|=\left|x-4\right|+\left|2020-x\right|\ge x-4+2020-x=2016\)

Dấu "=" xảy ra <=> x - 4 \(\ge0\)

                          và 2020 - x \(\ge0\)

<=> \(x\ge4\) và \(x\le2020\)

\(\Leftrightarrow4\le x\le2020\)

Vậy A đạt GTNN là 2016 \(\Leftrightarrow4\le x\le2020\)

phutotet
28 tháng 4 2016 lúc 22:27

7< y : 4 < 9

Elizabeth Scarlett
Xem chi tiết
Thắng Nguyễn
8 tháng 7 2016 lúc 11:51

a)D=x2-x-1

\(=\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\)

Ta thấy:\(\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\ge0-\frac{5}{4}=-\frac{5}{4}\)

\(\Rightarrow D\ge-\frac{5}{4}\)

Dấu = khi x=1/2

Vậy Dmin=-5/4 <=>x=1/2

b)H=9x2-36x-136

\(=9\left(x-2\right)^2-172\)

Ta thấy:\(9\left(x-2\right)^2-172\ge0-172=-172\)

\(\Rightarrow H\ge-172\)

Dấu = khi x=2

Vậy Dmin=-172 <=> x=2

c)I=x(x-5)

\(=\frac{1}{4}\left(2x-5\right)^2-\frac{25}{4}\)

Ta thấy:\(\frac{1}{4}\left(2x-5\right)^2-\frac{25}{4}\ge0-\frac{25}{4}=-\frac{25}{4}\)

\(\Rightarrow I\ge-\frac{25}{4}\)

Dấu = khi x=5/2

Vậy Imin=-25/4 <=>x=5/2

ha nguyen thi
Xem chi tiết
Trang Nguyễn
13 tháng 6 2021 lúc 20:38

Đặt `B = |x - 1| + |x - 2| + |x - 3| + |x - 4|`

`= (|x - 1| + |x - 4|) + (|x - 2| + |x - 3|)`

`= (|x - 1| + |4 - x|) + (|x - 2| + |3 - x|)`

\(\Rightarrow B\ge\left|x-1+4-x\right|+\left|x-2+3-x\right|\)

\(B\ge\left|3\right|+\left|1\right|=4\)

\(\Rightarrow A\ge4+15=19\)

hay MinA = 19

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}\left(x-1\right)\left(4-x\right)\ge0\\\left(x-2\right)\left(3-x\right)\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-4\right)\le0\\\left(x-2\right)\left(x-3\right)\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}1\le x\le4\\2\le x\le3\end{matrix}\right.\Rightarrow2\le x\le3\)

Vậy MinA = 19 tại \(2\le x\le3\).

Ngọc Duyên DJ
Xem chi tiết
Ngọc Duyên DJ
Xem chi tiết
Huy Hoàng
18 tháng 12 2017 lúc 12:48

1/ Gọi Bmin là GTNN của B

Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)

=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).

=> Bmin = 0.

Vậy GTNN của B = 0.

2/ Gọi Dmin là GTNN của D.

Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)

và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> Dmin = 0.

=> \(\left|x-2\right|+\left|x-8\right|=0\)

=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)

Vậy không có x thoả mãn đk khi GTNN của D = 3.

Xuka
Xem chi tiết
Vũ Minh Tuấn
17 tháng 9 2019 lúc 20:51

Bài 1:

a) \(\left|x-2\right|=5\)

\(\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\)\(\left[{}\begin{matrix}x=5+2\\x=\left(-5\right)+2\end{matrix}\right.\)\(\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)

Vậy \(x\in\left\{7;-3\right\}.\)

b) \(\left|x-1\right|>4\)

\(\left[{}\begin{matrix}x-1>4\\x-1< -4\end{matrix}\right.\)\(\left[{}\begin{matrix}x>5\left(TM\right)\\x< -3\left(TM\right)\end{matrix}\right.\)

Vậy \(x>5\) hoặc \(x< -3\) thì \(\left|x-1\right|>4.\)

Mình chỉ làm bài 1 thôi nhé.

Chúc bạn học tốt!

Ngô Bá Hùng
17 tháng 9 2019 lúc 21:12

bài 2

\(A=\left|x-\frac{1}{3}\right|+2019\)

Có: \(\left|x-\frac{1}{3}\right|\ge0với\forall x\)

\(\Rightarrow\left|x-\frac{1}{3}\right|+2019\ge2019\\ \Leftrightarrow A\ge2019\)

Dấu "=" xảy ra khi: \(\left|x-\frac{1}{3}\right|=0\Leftrightarrow x=\frac{1}{3} \)

Vậy \(A_{min}=2019\) khi \(x=\frac{1}{3}\)

\(B=2020.\left|3x-1\right|\)

Có: \(\left|3x-1\right|\ge0với\forall x\)

\(\Rightarrow2020.\left|3x-1\right|\ge0\)

\(\Leftrightarrow B\ge0\)

Dấu "=" xảy ra khi \(\left|3x-1\right|=0\Leftrightarrow x=\frac{1}{3}\)

Vậy \(B_{min}=0\) khi \(x=\frac{1}{3}\)

Xem chi tiết
Ngọc Duyên DJ
Xem chi tiết
Nguyễn Thái Sơn
22 tháng 3 2020 lúc 21:49

Tìm GTNN của biểu thức B = I x-2017 I + I x-1 I

có  |x-2017|luôn\(\ge0\forall x\in Q\)

cũng có |-1|luôn\(\ge0\forall x\in Q\)

=>I x-2017 I + I x-1 I\(\ge0\forall x\in Q\)

=> I x-2017 I + I x-1 I=|x-2017|+|1-x|=|x-2017+1-x|=2016

dấu''='' xảy ra <=>(x-2017)(1-x)=0

TH1:

=>\(\orbr{\begin{cases}x-2017\ge0\\1-x\le0\end{cases}}\)

TH2: 

=> \(\orbr{\begin{cases}x-2017\le0\\1-x\ge0\end{cases}}\)

tự làm típ ! xét 2 TH thấy cái nào mà nó vô lí thì đánh vô lí chọn TH còn lại nhé !

 
Khách vãng lai đã xóa