`|x-1|+2020|x-2|+|x-3|`
`=|x-1|+|3-x|+2020|x-2|`
Áp dụng BĐT `|A|+|B|>=|A+B|`
`=>|x-1|+|3-x|>=|x-1+3-x|=2`
Mà `|x-2|>=0=>2020|x-2|>=0`
`=>|x-1|+2020|x-2|+|x-3|>=2`
Dấu "=" xảy ra khi $\begin{cases}(x-1)(3-x) \ge 0\\x-2=0\\\end{cases}$
`<=>` $\begin{cases}(x-1)(x-3) \le 0\\x=2\\\end{cases}$
`<=>` $\begin{cases}1 \le x \le 3\\x=2\\\end{cases}$
`<=>x=2`