CHO CÁC SỐ THỰC t, u, v thỏa mãn \(u^2+uv+v^2=1-\frac{3t^2}{2}\)
TÌM GTNN và GTLN của BT \(D=t+v+u\)
u và v là cá số thực dương thỏa mãn u + v =4
Tìm GTNN của \(P=u^2+v^2+\frac{33}{uv}\)
Mất 1 tiếng sau khi nhìn cái đề mới giải đc
Ta có \({u+v}≥ 2uv\)
\(=>{(u+v)^2-2uv}≥2uv\)
\(<=>{(u+v)^2/ 2}≥ 2uv\)
Và \({(u+v)^2/4}≥uv\)
\(P= {u^2+v^2}+{33 \over uv}\)
\(≥ {2uv}+{33\over uv}\)
\(={(u+v)^2 \over 2}+{33/{(u+v)^2 \over 4}}\)
Thế số vào ta sẽ đc kết quả \({65 \over 4}\)
Vậy GTNN của P là 65/4 khi u=v = 2
Sai!
Ta có \(P=u^2+v^2+\frac{33}{uv}\)
\(\ge\frac{\left(u+v\right)^2}{2}+\frac{33}{\frac{\left(u+v\right)^2}{4}}\)
\(=\frac{4^2}{2}+\frac{33}{\frac{4^2}{4}}=\frac{65}{4}\)
"=" <=> u=v=2
Áp dụng bđt : a^2+b^2 >= (a+b)^2 và ab < = (a+b)^2/4 thì :
P >= (u+v)^2/2 + 33/[(u+v)^2/4]
= 4^2/4 + 33/(4^2/4)
= 49/4
Dấu "=" xảy ra <=> u=v=2
Vậy ..............
Tk mk nha
Cho x ; y là các số thực thỏa mãn : 4x^2 + y^2 = 1 Tìm GTLN ; GTNN của bt A = \(\frac{2x+3y}{2x+y+2}\)
A = \(\frac{2x+3y}{2x+y+2}\)
<=> A(2x + y + 2) = 2x + 3y
<=> 2x.A + y.A + 2.A = 2x + 3y
<=> 2x(1 - A) + (3 - A).y = 2.A
Áp dụng BĐT Bunhia côp xki ta có: [2x.(1 - A) + ( 3 - A).y]2 < (4x2 + y2) .[(1 - A)2 + (3 - A)2]
=> (2.A)2 < 2A2 -8A + 10
<=> - 2A2 - 8A + 10 > 0
<=> A2 + 4A - 5 < 0
<=> (A - 1).(A + 5) < 0 <=> -5 < A < 1
Vậy Min A = -5 . giải hệ -5 = \(\frac{2x+3y}{2x+y+2}\); 4x2 + y2 = 1 => x ; y
Max A = 1 tại....
B1:Cho 2 số thực dương x,y thỏa x4+y4+\(\dfrac{1}{xy}\)=xy+2
GTNN và GTLN của biểu thức P=x.y là bao nhiêu?
B2: Cho 2 số a,b ∈ (0;1) và thỏa mãn
(a3+b3)(a+b)-ab(a-1)(b-1)=0
tìm GTLN của P=a.b
Bài 1: Cho x,y thỏa mãn \(x^2+y^2-xy=4\). Tìm GTLN và GTNN của A = \(x^2+y^2\)
Bài 2: Cho x,y>0 thỏa mãn xyz=1. Tìm GTNN của
E = \(\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)
cho số thực x thỏa mãn đk \(0\le x\le1\)
tìm GTNN, GTLN của bt P=\(\frac{x^2}{2-x^2}+\frac{1-x^2}{1+x^2}\)
Đặt \(x^2=p\left(0\le p\le1\right)\)
Ta có : \(P=\frac{p}{2-p}+\frac{1-p}{1+p}=-2+\frac{2}{2-p}+\frac{2}{1+p}\)
\(=-2+2\left(\frac{1}{2-p}+\frac{1}{1+p}\right)=2\left(\frac{3}{\left(2-p\right)\left(1+p\right)}-1\right)\)
\(=2\left(\frac{3}{2+p\left(1-p\right)}-1\right)\)
Do \(0\le p\le1\Rightarrow p\left(1-p\right)\ge0\) \(\Rightarrow P\le2\left(\frac{3}{2}-1\right)=1\) có MAX là 1
Ta có : \(p\left(1-p\right)\le\frac{\left(p+1-p\right)^2}{4}=\frac{1}{4}\)
\(\Rightarrow P\ge2\left(\frac{3}{2+\frac{1}{4}}-1\right)=\frac{2}{3}\)Có MIN là \(\frac{2}{3}\)
a) Giải hệ phương trình: \(\hept{\begin{cases}\frac{3}{\sqrt{x-4}}+\frac{4}{y+2}=7\\\frac{5}{\sqrt{x-4}}-\frac{1}{y+2}=4\end{cases};}\)
b) Tìm hai số u và v thỏa mãn: \(u^2+v^2=65\)và \(uv=-28\)
AI GIẢI NHANH VỚI Ạ!!!!
Câu a em nghĩ có thể làm như vầy ạ,câu b để sau (em mới lớp 7,cần suy ra nghĩ thêm)
a)ĐKXĐ: x > 4; \(y\ne2\)
Đặt \(\frac{1}{\sqrt{x-4}}=a;\frac{1}{y+2}=b\)
Hệ phương trình trở thành: \(\hept{\begin{cases}3a+4b=7\\5a-b=4\end{cases}}\Leftrightarrow\hept{\begin{cases}3a+4b=7\\20a-4b=16\end{cases}}\)
Cộng theo vế với vế của hai phương trình trong hệ,ta được: \(23a=7+16=23\Rightarrow a=1\Rightarrow b=1\)
Đến đây dễ rồi ạ.
b)
\(u^2+v^2+2uv=65-56=9=\left(u+v\right)^2=9\Rightarrow\orbr{\begin{cases}u+v=3\\u+v=-3\end{cases}}\)
\(u^2+v^2-2uv=65+56=121=\left(u-v\right)^2=121\Rightarrow\orbr{\begin{cases}u-v=11\\u-v=-11\end{cases}}\)
tự làm tiếp
câu 1
a, tìm cặp số nguyên (x,y) thỏa mãn x + y +xy = 2
b, tìm GTLN của bt Q = \(\dfrac{27-2x}{12-x}\) (với x nguyên)
câu 2,
a, cho đa thức f(x)=ax\(^2\) + bx +c.CMR nếu f(x) nhận 1 và -1 là nghiệm thì 2 số a và c đối nhau
b, tìm GTNN của bt P = (\(\left|x-3\right|\) + 2 )\(^2\) + \(\left|y+3\right|\) + 2007
Câu 2:
a: \(\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(-1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b+c=0\\a-b+c=0\end{matrix}\right.\Leftrightarrow a+c=0\)
=>a và c đối nhau
b: \(P=\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2007\ge4+2007=2011\)
Dấu '=' xảy ra khi x=3 và y=-3
Cho x,y, là 2 số thực thỏa mãn : x2 +2y2 +2xy+ 7x + 7y+10=0
Tìm GTNN và GTLN của bt A=x+y+1
Tim các số thực u, v thỏa mãn: \(\left(u+\sqrt{u^2+2}\right)\left(v-1+\sqrt{v^2-2v+3}\right)=2\)
CM: \(u^3+v^3+3uv=1\)
Ta có: \(\hept{\begin{cases}\left(\sqrt{u^2+2}+u\right)\left(\sqrt{u^2+2}-u\right)=2\\\left(\sqrt{v^2-2v+3}+v-1\right)\left(\sqrt{v-2v+3}-v+1\right)=2\end{cases}}\)
Theo đề bài thì ta có:
\(\left(u+\sqrt{u^2+2}\right)\left(v-1+\sqrt{v^2-2v+3}\right)=2\)
Từ đây ta có hệ:
\(\hept{\begin{cases}\sqrt{u^2+2}-u=\sqrt{v^2-2v+3}+v-1\left(1\right)\\\sqrt{u^2+2}+u=\sqrt{v^2-2v+3}-v+1\left(2\right)\end{cases}}\)
Lấy (1) - (2) ta được: \(u+v=1\)
Ta có: \(u^3+v^3+3uv=1\)
\(\Leftrightarrow3uv+u^2-uv+v^2=1\)
\(\Leftrightarrow\left(u+v\right)^2=1\)(đúng)
\(\Rightarrow\)ĐPCM