Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Wolf 2k6 has been cursed
Xem chi tiết
An Thy
19 tháng 6 2021 lúc 8:48

a) Ta có: \(\angle AFH+\angle AEH=90+90=180\Rightarrow AEHF\) nội tiếp

Gọi D là trung điểm AH

Vì \(\Delta AEH\) vuông tại E có D là trung điểm AH \(\Rightarrow DE=DA=DH\)

Tương tự \(\Rightarrow DF=DA=DH\Rightarrow DE=DF=DA=DH\)

\(\Rightarrow D\) là tâm (AEHF)

Tương tự,ta chứng minh BCEF nội tiếp đường tròn có tâm là BC

b) Xét \(\Delta MFB\) và \(\Delta MCE:\) Ta có: \(\left\{{}\begin{matrix}\angle EMCchung\\\angle MFB=\angle MCE\end{matrix}\right.\)

\(\Rightarrow\Delta MFB\sim\Delta MCE\left(g-g\right)\Rightarrow\dfrac{MF}{MC}=\dfrac{MB}{ME}\Rightarrow ME.MF=MB.MC\)

Xét \(\Delta MNB\) và \(\Delta MCA:\) Ta có: \(\left\{{}\begin{matrix}\angle AMCchung\\\angle MNB=\angle MCA\end{matrix}\right.\)

\(\Rightarrow\Delta MNB\sim\Delta MCA\left(g-g\right)\Rightarrow\dfrac{MN}{MC}=\dfrac{MB}{MA}\Rightarrow MN.MA=MB.MC\)

\(\Rightarrow MN.MA=ME.MF\Rightarrow\dfrac{MN}{ME}=\dfrac{MF}{MA}\)

Xét \(\Delta MNF\) và \(\Delta MEA:\) Ta có: \(\left\{{}\begin{matrix}\angle AMEchung\\\dfrac{MN}{ME}=\dfrac{MF}{MA}\end{matrix}\right.\)

\(\Rightarrow\Delta MNF\sim\Delta MEA\left(c-g-c\right)\Rightarrow\angle MNF=\angle MEA\Rightarrow ANFE\) nội tiếp

c) ANFE nội tiếp mà AEHF nội tiếp \(\Rightarrow A,E,H,F,N\) cùng thuộc 1 đường tròn

\(\Rightarrow\angle ANH=\angle AFH=90\Rightarrow NH\bot AN\)

Vì AK là đường kính \(\Rightarrow\angle ANK=90\Rightarrow NK\bot AN\)

\(\Rightarrow N,H,K\) thẳng hàngundefined

Hair an
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 3 2023 lúc 10:26

Sửa đề: Hai đường cao BN,CK

a: góc AKH+góc ANH=180 độ

=>AKHN nội tiếp

Tâm là trung điểm của AH

b: Xet ΔANB vuông tại N và ΔAKC vuông tại K có

góc A chung

=>ΔANB đồng dạng với ΔAKC

=>NB/KC=AN/AK

=>NB*AK=AN*KC

c: góc BKC=góc BNC=90 độ

=>BKNC nội tiếp

d: Xét ΔACB co

BN,CK là đường cao

BN cắt CK tại H

=>H là trực tâm

=>AH vuông góc CB

Dung Ho
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 2 2023 lúc 20:29

a: Xét tứ giác BEMC có

góc BEC=góc BMC=90 độ

=>BEMC là tứ giác nội tiếp

b: AEHM; BEHI;CIHM;AEIC; BIMA

c: Xét (O) có

ΔACK nội tiếp

AK là đường kính

=>ΔACK vuông tại C

Xét ΔACK vuông tại C và ΔAIB vuông tại I có

góc AKC=góc ABI

=>ΔACK đồng dạng vơi ΔAIB

=>AC/AI=AK/AB

=>AC*AB=AK*AI

Wolf 2k6 has been cursed
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 6 2021 lúc 19:40

a) Xét tứ giác BCEF có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

nên BCEF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Tâm I của đường tròn ngoại tiếp tứ giác BCEF là trung điểm của BC

An Thy
28 tháng 6 2021 lúc 9:44

bạn tham khảo ở đây nha,bài này mình từng làm rồi

https://hoc24.vn/cau-hoi/881cho-tam-giac-abc-nhon-noi-tiep-duong-tron-o-cac-duong-cao-adbecf-cat-nhau-tai-ha-chung-minh-tu-giac-bcef-noi-tiep-va-xac-dinh-tam-i-cua-duong-tron-ngoai-tiep-tu-giacb-duong-thang-ef-cat-duon.1092906662181

Khai Nguyen Duc
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 8 2021 lúc 19:45

a) Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

nên BFEC là tứ giác nội tiếp

hay B,F,E,C cùng thuộc một đường tròn

Tâm I là trung điểm của BC

Ly Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 2 2023 lúc 10:25

a: Xét tứ giác BCDE có

góc BEC=góc BDC=90 độ

=>BCDE là tứ giác nội tiếp

b: Xet ΔBEH vuông tại E và ΔCEA vuông tại E có

góc EBH=góc ECA

=>ΔBEH đồng dạng với ΔCEA

=>EB/EC=EH/EA

=>EB*EA=EH*EC

c: Khi A di chuyển thì A vẫn nằm trên (O)

Bán kính đường tròn ngoại tiếp của tam giác vẫn là R=OA=OB=OC thì chắc chắn ko đổi do BC cố định rồi

Wolf 2k6 has been cursed
Xem chi tiết
An Thy
23 tháng 6 2021 lúc 17:13

a) Ta có: \(\angle BFC=\angle BEC=90\Rightarrow BCEF\) nội tiếp

Gọi I là trung điểm BC

Ta có: \(\Delta BFC\) vuông tại F có I là trung điểm BC \(\Rightarrow IF=IB=IC\)

 \(\Delta BEC\) vuông tại E có I là trung điểm BC \(\Rightarrow IE=IB=IC\)

\(\Rightarrow IE=IF=IB=IC\Rightarrow I\) là tâm (BCEF)

b) Xét \(\Delta MKB\) và \(\Delta MCT:\) Ta có: \(\left\{{}\begin{matrix}\angle MKB=\angle MCT\left(BKTCnt\right)\\\angle TMCchung\end{matrix}\right.\)

\(\Rightarrow\Delta MKB\sim\Delta MCT\left(g-g\right)\Rightarrow\dfrac{MK}{MC}=\dfrac{MB}{MT}\Rightarrow MK.MT=MB.MC\left(1\right)\)

Xét \(\Delta MFB\) và \(\Delta MCE:\) Ta có: \(\left\{{}\begin{matrix}\angle MFB=\angle MCE\left(BCEFnt\right)\\\angle EMCchung\end{matrix}\right.\)

\(\Rightarrow\Delta MFB\sim\Delta MCE\left(g-g\right)\Rightarrow\dfrac{MF}{MC}=\dfrac{MB}{ME}\Rightarrow MB.MC=MF.ME\left(2\right)\)

Ta có: \(\angle AFC=\angle ADC=90\Rightarrow AFDC\) nội tiếp

Tương tự \(\Rightarrow ABDE,AEHF\) nội tiếp

Ta có: \(\angle FEI=\angle FEB+\angle BEI=\angle FAH+\angle EBI\) (\(\Delta EBI\) cân tại I)

\(=\angle FAH+\angle EAD=\angle BAC=\angle BDF\) (AFDC nội tiếp)

\(\Rightarrow FDIE\) nội tiếp \(\Rightarrow\angle MDF=\angle MEI\)

Xét \(\Delta MFD\) và \(\Delta MIE:\) Ta có: \(\left\{{}\begin{matrix}\angle MDF=\angle MEI\\\angle EMIchung\end{matrix}\right.\)

\(\Rightarrow\Delta MFD\sim\Delta MIE\left(g-g\right)\Rightarrow\dfrac{MF}{MI}=\dfrac{MD}{ME}\Rightarrow MD.MI=MF.ME\left(3\right)\)

Từ (1),(2) và (3) \(\Rightarrow MD.MI=MK.MT\)

c) Từ C kẻ đường thẳng song song với NS cắt AB,AD lần lượt tại J và L 

Vì \(CJ\parallel NS\) và \(NS\bot IH\Rightarrow CJ\bot IH\) mà \(CD\bot HL\)

\(\Rightarrow I\) là trực tâm tam giác CHL \(\Rightarrow LI\bot HC\) mà \(AJ\bot CH\)

\(\Rightarrow IL\parallel BJ\) mà I là trung điểm BC \(\Rightarrow L\) là trung điểm CJ

mà \(CJ\parallel NS\) \(\Rightarrow G\) là trung điểm NS (dùng Thales để biến đổi thôi,bạn tự chứng minh nha)

An Thy
23 tháng 6 2021 lúc 17:45

Linh Lê
Xem chi tiết
Trần Minh Hoàng
4 tháng 3 2021 lúc 19:24

Mình sửa lại đề: Cho tam giác ABC nhọn (AB < AC) nội tiếp (O). Đường cao BD, CE cắt nhau tại H. EF cắt BC tại F. AF cắt lại (O) tại K. Gọi M là trung điểm của BC.

a) Từ gt dễ thấy tứ giác BCDE nội tiếp đường tròn tâm M.

b) Tứ giác BCDE nội tiếp nên theo phương tích ta có FB . FC = FD . FE.

Tứ giác AKBC nội tiếp nên theo phương tích ta có FK . FA = FB . FC.

Vậy ta có đpcm.

c) Ta có FA . FK = FE . FD nên theo phương tích đảo ta có tứ giác AKED nội tiếp.

Gọi giao điểm thứ hai của đường tròn đường kính AH và FH là N.

Khi đó FH . FN = FE . FD = FB . FC.

Suy ra tứ giác BHNC nội tiếp.

Ta có \(\widehat{DNC}=360^o-\widehat{DNH}-\widehat{CNH}=\left(180^o-\widehat{DNH}\right)+\left(180^o-\widehat{CNH}\right)=\widehat{DEH}+\widehat{HBC}=2\widehat{HBC}=\widehat{DMC}\).

Do đó tứ giác DNMC nội tiếp.

Tương tự tứ giác ENMB nội tiếp.

Suy ra \(\widehat{DNM}+\widehat{DNA}=180^o-\widehat{ACB}+\widehat{AED}=180^o\) nên A, N, M thẳng hàng.

Từ đó \(\widehat{MHN}=\widehat{ANH}=90^o\) nên \(FH\perp AM\).

(Câu c là trường hợp đặc biệt của định lý Brocard khi tứ giác BEDC nội tiếp đường tròn tâm M).

Trần Minh Hoàng
4 tháng 3 2021 lúc 19:25

Hình vẽ: undefined

Hân Hân
Xem chi tiết