Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Wolf 2k6 has been cursed

cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn tâm O . Hai đường cao BE ,CF của tam giác ABC cắt hau tại H
A. chứng minh các từ giác AFHE và BCEF nọi tiếp được , xác định tâm của đường tròn ngoại tiếp
B/ Đường thẳng EF cắt đường thẳng BC tại M , đoạn thẳng AM cắt đường tròn O tại N , chứng minh tứ giác AEFN nội tiếp
C. kẻ đường kính AK của đường tròn O . chứng minh ba điểm N,H,K thẳng hàng
thank :333

An Thy
19 tháng 6 2021 lúc 8:48

a) Ta có: \(\angle AFH+\angle AEH=90+90=180\Rightarrow AEHF\) nội tiếp

Gọi D là trung điểm AH

Vì \(\Delta AEH\) vuông tại E có D là trung điểm AH \(\Rightarrow DE=DA=DH\)

Tương tự \(\Rightarrow DF=DA=DH\Rightarrow DE=DF=DA=DH\)

\(\Rightarrow D\) là tâm (AEHF)

Tương tự,ta chứng minh BCEF nội tiếp đường tròn có tâm là BC

b) Xét \(\Delta MFB\) và \(\Delta MCE:\) Ta có: \(\left\{{}\begin{matrix}\angle EMCchung\\\angle MFB=\angle MCE\end{matrix}\right.\)

\(\Rightarrow\Delta MFB\sim\Delta MCE\left(g-g\right)\Rightarrow\dfrac{MF}{MC}=\dfrac{MB}{ME}\Rightarrow ME.MF=MB.MC\)

Xét \(\Delta MNB\) và \(\Delta MCA:\) Ta có: \(\left\{{}\begin{matrix}\angle AMCchung\\\angle MNB=\angle MCA\end{matrix}\right.\)

\(\Rightarrow\Delta MNB\sim\Delta MCA\left(g-g\right)\Rightarrow\dfrac{MN}{MC}=\dfrac{MB}{MA}\Rightarrow MN.MA=MB.MC\)

\(\Rightarrow MN.MA=ME.MF\Rightarrow\dfrac{MN}{ME}=\dfrac{MF}{MA}\)

Xét \(\Delta MNF\) và \(\Delta MEA:\) Ta có: \(\left\{{}\begin{matrix}\angle AMEchung\\\dfrac{MN}{ME}=\dfrac{MF}{MA}\end{matrix}\right.\)

\(\Rightarrow\Delta MNF\sim\Delta MEA\left(c-g-c\right)\Rightarrow\angle MNF=\angle MEA\Rightarrow ANFE\) nội tiếp

c) ANFE nội tiếp mà AEHF nội tiếp \(\Rightarrow A,E,H,F,N\) cùng thuộc 1 đường tròn

\(\Rightarrow\angle ANH=\angle AFH=90\Rightarrow NH\bot AN\)

Vì AK là đường kính \(\Rightarrow\angle ANK=90\Rightarrow NK\bot AN\)

\(\Rightarrow N,H,K\) thẳng hàngundefined


Các câu hỏi tương tự
Wolf 2k6 has been cursed
Xem chi tiết
Wolf 2k6 has been cursed
Xem chi tiết
Nguyễn Viễn
Xem chi tiết
Tâm
Xem chi tiết
xin vĩnh biệt lớp 9
Xem chi tiết
𝖈𝖍𝖎𝖎❀
Xem chi tiết
Kim Taehyungie
Xem chi tiết
xin vĩnh biệt lớp 9
Xem chi tiết
Xuân Hùng Hoàng
Xem chi tiết