Giải phương trình ẩn t =\(\frac{5}{x}-\frac{x}{4}\)
\(x^2+\frac{400}{x^2}=35+24\left(\frac{5}{x}-\frac{x}{4}\right)\)
giải phương trình \(x^2+\frac{400}{x^2}=35+24\left(\frac{5}{x}-\frac{x}{4}\right)\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Trl
-Bạn kia làm đúng rồi nhé ~!
Chúc bạn học tốt
#Mưaa
giải phương trình \(x^2+\frac{400}{x^2}=35+24\left(\frac{5}{x}-\frac{x}{4}\right)\)
ĐẠI SỐ
1. Giải các phương trình sau :
a) \(\frac{25x-655}{95}-\frac{5\left(x-12\right)}{209}=\frac{89-3x-\frac{2\left(x-18\right)}{5}}{11}\)
b) \(\frac{8\left(x+22\right)}{45}-\frac{7x+149+\frac{6\left(x+12\right)}{5}}{9}=\frac{x+35+\frac{2\left(x+50\right)}{9}}{5}\)
c) \(\frac{x+\frac{2\left(3-x\right)}{5}}{14}-\frac{5x-4\left(x-1\right)}{24}=\frac{7x+2+\frac{9-3x}{5}}{12}+\frac{2}{3}\)
2. Giải các bất phương trình sau :
a) \(5+\frac{x+4}{5}< x-\frac{x-2}{2}+\frac{x+3}{3}\)
b) \(x+1-\frac{x-1}{3}< \frac{2x+3}{2}+\frac{x}{3}+5\)
c) \(\frac{\left(3x-2\right)^2}{3}-\frac{\left(2x+1\right)^2}{3}\le x\left(x+1\right)\)
d) \(\frac{2x+3}{4}-\frac{x+1}{3}\ge\frac{1}{2}-\frac{3-x}{5}\)
\(\frac{25x-655}{95}-\frac{5\left(x-12\right)}{209}=\frac{89-3x-\frac{2\left(x-18\right)}{5}}{11}\)
\(< =>\frac{5x-131}{19}=\frac{1631-52x-\frac{38x-684}{5}}{209}\)
\(< =>\left(5x-131\right)209=\left(1631-52x-\frac{38x-684}{5}\right)19\)
\(< =>55x-1441=1631-52x-\frac{38x-684}{5}\)
\(< =>3072-107x=\frac{38x-684}{5}\)
\(< =>\left(3072-107x\right)5=38x-684\)
\(< =>15360-535x-38x-684=0\)
\(< =>14676=573x< =>x=\frac{14676}{573}=\frac{4892}{191}\)
nghệm xấu thế
\(\frac{8\left(x+22\right)}{45}-\frac{7x+149+\frac{6\left(x+12\right)}{5}}{9}=\frac{x+35+\frac{2\left(x+50\right)}{9}}{5}\)
\(< =>\frac{8x+176}{45}-\frac{41x+817}{45}=\frac{11x+415}{45}\)
\(< =>993-33x-11x-415=0\)
\(< =>578=44x< =>x=\frac{289}{22}\)
Bài 1:
b) Phương trình đã cho tương đương với phương trình:
\(\frac{8\left(x+22\right)-55\left(7x+149\right)-6\left(x+12\right)}{45}=\frac{9\left(x+35\right)+2\left(x+50\right)}{45}\)
\(\Leftrightarrow44x=-1056\)
\(\Leftrightarrow x=-24\)
Vậy x=-24 là nghiệm của phương trình
c) Phương trình đã cho tương đương với phương trình:
\(\frac{3x+6}{70}-\frac{x+4}{24}=\frac{32x+19}{60}+\frac{2}{3}\)
\(\Leftrightarrow12\left(3x+6\right)-35\left(x+4\right)=14\left(32x+19\right)+560\)
\(\Leftrightarrow-447x=894\)
\(\Leftrightarrow x=-2\)
Vậy x=-2 là nghiệm của phương trình
Giải phương trình sau:
\(\frac{x+\frac{2\left(3-x\right)}{5}}{14}-\frac{5x-4\left(x-1\right)}{24}=\frac{7x+2+\frac{9-3x}{5}}{12}+\frac{2}{3}\)
(đang cần rất gấp cho kì thi học kì)
\(\frac{x+\frac{2\left(3-x\right)}{5}}{14}-\frac{5x-4\left(x-1\right)}{24}=\frac{7x+2+\frac{9-3x}{5}}{12}+\frac{2}{3}\)
\(\Leftrightarrow\frac{\frac{5x+6-2x}{5}}{14}-\frac{x+4}{24}=\frac{\frac{35x+10+9-3x}{5}}{12}+\frac{2}{3}\)
\(\Leftrightarrow\frac{\frac{3x+6}{5}}{14}-\frac{x+4}{24}=\frac{\frac{32x+19}{5}}{12}+\frac{2}{3}\)
\(\Leftrightarrow\left(\frac{3x+6}{5}\cdot\frac{1}{14}\right)-\frac{x+4}{24}=\left(\frac{32x+19}{5}\cdot\frac{1}{12}\right)+\frac{2}{3}\)(CHIA CHO 14 LÀ NHÂN NGHỊCH ĐẢO VỚI 1/14,) (CHIA CHO 12 LÀ NHÂN NGHỊCH ĐẢO VỚI 1/12)\(\Leftrightarrow\frac{3x+6}{70}-\frac{x+4}{24}-\frac{32x+19}{60}-\frac{2}{3}=0\)\(\Leftrightarrow\frac{12\left(3x+6\right)-35\left(x+4\right)-14\left(32x+19\right)-2\cdot280}{840}=0\)
\(\Leftrightarrow12\left(3x+6\right)-35\left(x+4\right)-14\left(32x+19\right)-560=0\)
\(\Leftrightarrow36x+72-35x-140-448x-266-560=0\)
\(\Leftrightarrow-447x-894=0\Leftrightarrow x=\frac{-894}{447}=-2\)(NHẬN)
Vậy tập nghiệm của phương trình là : S = { -2 }
tk cho mk nka ! ! ! th@nks ! ! !
Giải các phương trình và bất phương trình sau:
a, \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)
b, \(\frac{2x\left(x^2+1\right)-x^2-4}{3}+x\left(x^2-x+1\right)>\frac{5x^2+5}{3}\)
a) \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)
\(\left(\frac{x-1}{2}+1\right)+\left(\frac{x-2}{3}+3\right)+\left(\frac{x-3}{4}+1\right)=\left(\frac{x-4}{5}+1\right)+\left(\frac{x-5}{6}+1\right)\)
\(\frac{x-1}{2}+\frac{x-1}{3}+\frac{x-1}{4}=\frac{x-1}{5}+\frac{x-1}{6}\)
\(\left(x-1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)\)=0
\(x-1=0\)
\(x=1\)
giải các phương trình chứa ẩn ở mẫu sau đây dạng \(\frac{p\left(x\right)}{f\left(x\right)}+\frac{q\left(x\right)}{g\left(x\right)}+\frac{r\left(x\right)}{f\left(x\right).g\left(x\right)}=a\)
a) \(\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\)
b) \(\frac{2x}{x+4}-\frac{4x}{x^2-16}=0\)
c) \(\frac{3x+2}{3x-2}-\frac{6}{3x+2}=\frac{9x^2}{9x^2-4}\)
a/ ĐKXĐ: \(x\ne\pm5\)
\(\Leftrightarrow\left(x+5\right)^2-\left(x-5\right)^2=20\)
\(\Leftrightarrow\left(x^2+10x+25\right)-\left(x^2-10x+25\right)=20\)
\(\Leftrightarrow20x=20\Rightarrow x=1\)
b/ ĐKXĐ: \(x\ne\pm4\)
\(\Leftrightarrow2x\left(x-4\right)-4x=0\)
\(\Leftrightarrow2x^2-12x=0\)
\(\Leftrightarrow2x\left(x-6\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
c/ ĐKXĐ: \(x\ne\pm\frac{2}{3}\)
\(\Leftrightarrow\left(3x+2\right)^2-6\left(3x-2\right)=9x^2\)
\(\Leftrightarrow9x^2+12x+4-18x+12=9x^2\)
\(\Leftrightarrow6x=16\Rightarrow x=\frac{8}{3}\)
Giải phương trình \(\frac{1}{\left(x^2+5\right)\left(x^2+4\right)}+\frac{1}{\left(x^2+4\right)\left(x^2+3\right)}+\frac{1}{\left(x^2+3\right)\left(x^2+2\right)}+\frac{1}{\left(x^2+2\right)}+\frac{1}{\left(x^2+1\right)}\)
AYUASGSHXHFSGDB HAGGAHAJF
PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU
Dạng 1. TÌM ĐIỀU KIỆN XÁC ĐỊNH CỦA MỘT PHƯƠNG TRÌNH.
Bài 1. Tìm điều kiện xác định của các phương trình:
a) \(\frac{7x}{x+4}-\frac{x-3}{x-1}=\frac{x-5}{8}\) b) \(\frac{x+6}{5\left(x-2\right)}-\frac{x-1}{3\left(x+2\right)}=\frac{4}{x^2-4}\)
Dạng 2. GIẢI PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU
Bài 2. Giải phương trình sau:
a) \(\frac{4x-3}{x-5}=\frac{29}{3}\)
b) \(\frac{2x-1}{5-3x}=2\)
c) \(\frac{7}{x+2}=\frac{3}{x-5}\)
Bài 3. Giải phương trình sau:
a) \(\frac{x+5}{3\left(x-1\right)}+1=\frac{3x+7}{5\left(x-1\right)}\)
b) \(\frac{x-3}{x-5}+\frac{1}{x}=\frac{x+5}{x\left(x-5\right)}\)
c) \(\frac{11}{x}=\frac{9}{x+1}+\frac{2}{x-4}\)
Dạng 3. TÌM GIÁ TRỊ CỦA BIẾN ĐỂ GIÁ TRỊ CỦA HAI BIỂU THỨC CÓ MỐI LIÊN QUAN NÀO ĐÓ.
Bài 4. Cho hai biểu thức \(A=\frac{3}{3x+1}+\frac{2}{1-3x}\); \(B=\frac{x-5}{9x^2-1}\)với giá trị nào của x thì hai biểu thức A và B có cùng một giá trị ?
Dạng 4:PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU CHỨA THAM SỐ
Bài 5. Cho phương trình (ẩn x): \(\frac{x+k}{k-x}-\frac{x-k}{k+x}=\frac{k\left(3k+1\right)}{k^2-x^2}\)
a) Giải phương trình với \(k=1\)
b) Giải phương trình với \(k=0\)
c) Tìm các giá trị của k sao cho phương trình nhận \(x=\frac{1}{2}\)làm nghiệm.
Giải phương trình:
a) \(\frac{x+\frac{2\left(3-x\right)}{5}}{14}-\frac{5x-4\left(x-1\right)}{24}=\frac{7x+2+\frac{9-3x}{5}}{12}+\frac{2}{3}\)
b) \(\frac{3}{10}\left(1,2-x\right)-\frac{5+7x}{4}=\frac{1}{20}\left(9x+0,2\right)-\frac{12,5x+4,5}{5}\)
a) \(\frac{x+\frac{2\left(3-x\right)}{5}}{14}-\frac{5x-4\left(x-1\right)}{24}=\frac{7x+2+\frac{9-3x}{5}}{12}+\frac{2}{3}\)
<=> \(\frac{5x+2\left(3-x\right)}{70}-\frac{5x-4\left(x-1\right)}{24}=\frac{35x+10+9-3x}{60}+\frac{2}{3}\)
<=> \(12\left(5x+6-2x\right)-35\left(5x-4x+4\right)\)
<=> \(14\left(35x+10+9-3x\right)+280.2\) <=> \(12\left(3x+6\right)-35\left(x+4\right)\)
<=> \(14\left(32x+19\right)+560\)
<=> \(36x+72-35x-140=448x+226+560\)
<=> \(-447x=894\)
<=> x = -2