giải các phương trình chứa ẩn ở mẫu sau đây dạng \(\frac{p\left(x\right)}{f\left(x\right)}+\frac{q\left(x\right)}{g\left(x\right)}+\frac{r\left(x\right)}{f\left(x\right).g\left(x\right)}=a\)
a) \(\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\)
b) \(\frac{2x}{x+4}-\frac{4x}{x^2-16}=0\)
c) \(\frac{3x+2}{3x-2}-\frac{6}{3x+2}=\frac{9x^2}{9x^2-4}\)
a/ ĐKXĐ: \(x\ne\pm5\)
\(\Leftrightarrow\left(x+5\right)^2-\left(x-5\right)^2=20\)
\(\Leftrightarrow\left(x^2+10x+25\right)-\left(x^2-10x+25\right)=20\)
\(\Leftrightarrow20x=20\Rightarrow x=1\)
b/ ĐKXĐ: \(x\ne\pm4\)
\(\Leftrightarrow2x\left(x-4\right)-4x=0\)
\(\Leftrightarrow2x^2-12x=0\)
\(\Leftrightarrow2x\left(x-6\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
c/ ĐKXĐ: \(x\ne\pm\frac{2}{3}\)
\(\Leftrightarrow\left(3x+2\right)^2-6\left(3x-2\right)=9x^2\)
\(\Leftrightarrow9x^2+12x+4-18x+12=9x^2\)
\(\Leftrightarrow6x=16\Rightarrow x=\frac{8}{3}\)