Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Julian Edward

giải các phương trình chứa ẩn ở mẫu sau đây dạng \(\frac{p\left(x\right)}{f\left(x\right)}+\frac{q\left(x\right)}{g\left(x\right)}+\frac{r\left(x\right)}{f\left(x\right).g\left(x\right)}=a\)

a) \(\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{x^2-4x+3}\)

b) \(\frac{x+1}{x^2-1}+\frac{2}{x^2+x+1}=\frac{3x^2}{x^3-1}\)

c) \(5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)

Nguyễn Việt Lâm
17 tháng 9 2019 lúc 22:49

a/ ĐKXĐ: \(x\ne\left\{1;3\right\}\)

\(\Leftrightarrow\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{\left(x-1\right)\left(x-3\right)}\)

\(\Leftrightarrow\left(x+5\right)\left(x-3\right)=\left(x+1\right)\left(x-1\right)-8\)

\(\Leftrightarrow x^2+2x-15=x^2-9\)

\(\Leftrightarrow2x=6\Rightarrow x=3\) (ktm)

Vậy pt vô nghiệm

b/ ĐKXĐ: \(x\ne1\)

\(\Leftrightarrow\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2}{x^2+x+1}=\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\Leftrightarrow x^2+x+1+2\left(x-1\right)=3x^2\)

\(\Leftrightarrow2x^2-3x+1=0\Rightarrow\left[{}\begin{matrix}x=1\left(ktm\right)\\x=\frac{1}{2}\end{matrix}\right.\)

c/ ĐKXĐ: \(x\ne\pm4\)

\(\Leftrightarrow\frac{5\left(x^2-16\right)}{\left(x-4\right)\left(x+4\right)}+\frac{96}{\left(x-4\right)\left(x+4\right)}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}\)

\(\Leftrightarrow5x^2-80+96=\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)\)

\(\Leftrightarrow5x^2+16=5x^2+2x\)

\(\Rightarrow x=8\)


Các câu hỏi tương tự
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Kẹo Ngọt Cây
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Julian Edward
Xem chi tiết