cho a+b+c=2015 va \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2015}\). CMR:trong 3 số a;b;c có 1 số =2015
cho 3 số a, b, c thuộc R t/m \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a^{^{ }}+b+c}\)
cmr: \(\frac{1}{a^{2015}}+\frac{1}{b^{2015}}+\frac{1}{c^{2015}}=\frac{1}{a^{2015}+b^{2015}+c^{2015}}\)
mong được mọi người giúp đỡ
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{-a-b}{\left(a+b+c\right)c}\)
\(\Leftrightarrow\left(a+b\right)\left(a+b+c\right)c=-\left(a+b\right)ab\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[c\left(a+c\right)+b\left(a+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
Tự làm nốt
cho a,b,c là ba số thực khác 0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)chung minh:
\(\frac{1}{a^{2015}}+\frac{1}{b^{2015}}+\frac{1}{c^{2015}}=\frac{1}{a^{2015}+b^{2015}+c^{2015}}\)
1)Cho a,b,c là các số thực thỏa mãn: a+b+c=2015 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2015}\).Tính \(\frac{1}{a^{2015}}+\frac{1}{b^{2015}}+\frac{1}{c^{2015}}\)
2)Cho n là số dương.Chứng minh:
T= \(2^{3n+1}-2^{3n-1}+1\) là hợp số.
3)Cho a,b,c là ba số dương và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\).Tìm Max A=\(\frac{1}{\sqrt{a^2-ab+b^2}}+\frac{1}{\sqrt{b^2-bc+c^2}}+\frac{1}{\sqrt{c^2-ac+a^2}}\)
Chứng minh rằng nếu a, b, c là ba số thỏa mãn:
\(a+b+c=2015\) và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2015}\)
Thì trong 3 số a, b, c phải có một số bằng 2015
ta có:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2015}\)
\(\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{2015}\)
\(\Rightarrow2015\left(ab+bc+ac\right)=abc\)
mà a+b+c=2015 \(\Rightarrow\left(a+b+c\right)\left(ab+bc+ac\right)-abc=0\)
\(\Leftrightarrow\left(ab+bc\right)\left(a+b+c\right)+ac\left(a+b+c\right)-abc=0\)
\(\Leftrightarrow b\left(a+c\right)\left(a+b+c\right)+ac\left(a+c\right)+abc-abc=0\)
\(\Leftrightarrow\left(a+c\right)\left(ab+b^2+bc+ac\right)=0\)
\(\Leftrightarrow\left(a+c\right)\left(b+c\right)\left(a+b\right)=0\)
\(\Rightarrow a+c=0\Rightarrow b=2015;b+c=0\Rightarrow a=2015;a+c=0\Rightarrow b=2015\)
VẬy.......
a) Cho a + b +c = 2015 và \(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=\frac{1}{2015}\)
Tính S = \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
b) cho 2 số a,b thỏa mãn điều kiện a+b=1.Chứng minh a3 +b3 +ab lớn hơn hoặc bằng \(\frac{1}{2}\)
\(a)\) Ta có :
\(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=\frac{1}{2015}\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=\left(a+b+c\right).\frac{1}{2015}\)
\(\Leftrightarrow\)\(\frac{a+b+c}{a+b}+\frac{a+b+c}{a+c}+\frac{a+b+c}{b+c}=\frac{a+b+c}{2015}\)
\(\Leftrightarrow\)\(1+\frac{c}{a+b}+1+\frac{b}{a+c}+1+\frac{a}{b+c}=\frac{2015}{2015}\)
\(\Leftrightarrow\)\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1-3\)
\(\Leftrightarrow\)\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=-2\)
Vậy ...
cho A=\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.......+\frac{1}{2016}+\frac{1}{2017}\)
va B=\(\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+......+\frac{2}{2015}+\frac{1}{2016}\)
Tinh ti so \(\frac{A}{B}\)
cho các số a,b,c thỏa \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c};\)(a,b,c khác 0)
Tính \(N=\left(a^{15}+b^{15}\right)\left(b^{17}+c^{27}\right)\left(c^{2015}+a^{2015}\right)\)
Từ gt , ta có :
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{-a-b}{c\left(a+b+c\right)}\)
\(\Leftrightarrow\left(a+b\right)c\left(a+b+c\right)=-\left(a+b\right)ab\)
\(\Rightarrow0=\left(a+b\right)\left(ca+cb+c^2\right)-\left[-\left(a+b\right)ab\right]=\left(a+b\right)\left(ca+cb+c^2+ab\right)=\left(a+b\right)\left(c+a\right)\left(c+b\right)\)
\(\Rightarrow a+b=0\) hoặc \(c+a=0\) . Gỉa sử \(a=-b\) thì \(a^{15}=-b^{15}\) nên \(a^{15}+b^{15}=0\)
\(\Rightarrow N=0\)
cho các số a,b,c thỏa \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c};\) (a,b,c khác 0)
tính N=(\(a^{15}+b^{15}\))(\(b^{17}+c^{27}\))(\(c^{2015}+a^{2015}\))
Từ gt,ta có :\(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\Leftrightarrow\frac{a+b}{ab}=\frac{-a-b}{c\left(a+b+c\right)}\Rightarrow\left(a+b\right)c\left(a+b+c\right)=-\left(a+b\right)ab\)
=> 0 = (a + b)(ca + cb + c2) - [-(a + b)ab] = (a + b)(ca + cb + c2 + ab) = (a + b)(c + a)(c + b)
=> a + b = 0 hoặc c + a = 0 hay c + b = 0.Giả sử a = -b thì a15 = -b15 nên a15 + b15 = 0 => N = 0
Cho a, b, c là độ dài 3 cạnh của 1 tam giác
Chứng minh: \(\frac{a^{2016}}{b+c-a}+\frac{b^{2016}}{c+a-b}+\frac{c^{2016}}{a+b-c}\ge a^{2015}+b^{2015}+c^{2015}\)
Vì \(a,b,c\) lần lượt là độ dài ba cạnh của 1 tam giác cho trước nên suy ra \(a,b,c>0\)
\(----------------\)
Áp dụng bất đẳng thức \(AM-GM\) cho hai số dương, ta có:
\(\frac{a^{2016}}{b+c-a}+\left(b+c-a\right)a^{2014}\ge2\sqrt{\frac{a^{2016}}{b+c-a}.\left(b+c-a\right)a^{2014}}=2a^{2015}\)
\(\Rightarrow\) \(\frac{a^{2016}}{b+c-a}+a^{2014}b+ca^{2014}\ge3a^{2015}\) \(\left(1\right)\)
Theo đó, ta cũng thiết lập tương tự hai bất đẳng thức mới bắt đầu với các hoán vị \(b\rightarrow c\rightarrow a,\) thu được:
\(\frac{b^{2016}}{c+a-b}+b^{2014}c+ab^{2014}\ge3b^{2015}\) \(\left(2\right)\)
\(\frac{c^{2016}}{a+b-c}+c^{2014}a+bc^{2014}\ge3c^{2015}\) \(\left(3\right)\)
Cộng ba bất đẳng thức \(\left(1\right);\left(2\right)\) và \(\left(3\right),\) đồng thời chuyển vế, khi đó bđt mới có dạng:
\(\frac{a^{2016}}{b+c-a}+\frac{b^{2016}}{c+a-b}+\frac{c^{2016}}{a+b-c}\ge3\left(a^{2015}+b^{2015}+c^{2015}\right)\)
\(-\left[ab\left(a^{2013}+b^{2013}\right)+bc\left(b^{2013}+c^{2013}\right)+ca\left(c^{2013}+a^{2013}\right)\right]\) \(\left(\alpha\right)\)
\(----------------\)
Mặt khác, lại theo bđt \(AM-GM,\) ta có:
\(\Omega_1:\) \(2014a^{2015}+b^{2015}\ge2015\sqrt[2015]{\left(a^{2014}b\right)^{2015}}=2015a^{2014}b\)
\(\Omega_2:\) \(2014b^{2015}+a^{2015}\ge2015\sqrt[2015]{\left(b^{2014}a\right)^{2015}}=2015b^{2014}a\)
Cộng từng vế của hai bđt ở trên và rút gọn, khi đó:
\(a^{2015}+b^{2015}\ge a^{2014}b+b^{2014}a=ab\left(a^{2013}+b^{2013}\right)\) \(\left(1^'\right)\)
Tương tự ta thực hiện các dãy biến đổi như trên, nhận được:
\(b^{2015}+c^{2015}\ge bc\left(b^{2013}+c^{2013}\right)\) \(\left(2^'\right)\)
\(c^{2015}+a^{2015}\ge ca\left(c^{2013}+a^{2013}\right)\) \(\left(3^'\right)\)
Từ \(\left(1^'\right);\left(2^'\right)\) và \(\left(3^'\right)\) suy ra \(2\left(a^{2015}+b^{2015}+c^{2015}\right)\ge\left[ab\left(a^{2013}+b^{2013}\right)+bc\left(b^{2013}+c^{2013}\right)+ca\left(c^{2013}+a^{2013}\right)\right]\) \(\left(\beta\right)\)
\(----------------\)
\(\left(\alpha\right);\beta\) \(\Rightarrow\) \(đpcm\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(a=b=c,\) tức là tam giác khi đó phải là một tam giác đều!