Cho a, b, c là độ dài 3 cạnh của 1 tam giác
Chứng minh: \(\frac{a^{2016}}{b+c-a}+\frac{b^{2016}}{c+a-b}+\frac{c^{2016}}{a+b-c}\ge a^{2015}+b^{2015}+c^{2015}\)
M=\(\frac{2015\cdot a}{ab+2015\cdot a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\) biet abc=2015.Tinh M
Cho 3 số thực dương a;b;c thỏa mãn \(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2015\)
Tìm GTLN của \(P=\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\frac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\frac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
cho abc=2015
tính M=\(\frac{2015a}{ab+2015a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\)
\(a+b+c=2018\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2018}\)
tính\(p=\frac{1}{a^{2015}}+\frac{1}{b^{2016}}+\frac{1}{c^{2017}}\)
Cho abc= 2015
Tính M=\(\frac{2015a}{ab+2015a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\)
cho \(\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)
Tính giá trị biểu thức M=(a23+b23).(b5+c5).(a2015+b2015)
moi nguoi oi giup minh di. minh dang can gap lam
cho a,b,c>0 thỏa mãn a+b+c=2016
Tìm GTNN P=\(\frac{2a+3b+3c+1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2c-1}{2017+c}\)
Cho a,b,c>0 thỏa mãn a+b+c=2016
Tìm GTNN P=\(\frac{2a+3b+3c-1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2c+1}{2017+c}\)