Những câu hỏi liên quan
Ngô Thị Yến Nhi
Xem chi tiết
Minh Hoàng Nguyễn
Xem chi tiết
Akai Haruma
17 tháng 5 2020 lúc 12:02

Lời giải:

Thực chất đề bài chỉ cần điều kiện $ab\geq 1$ là đủ rồi bạn.

BĐT cần chứng minh tương đương với:

\(\frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)

\(\Leftrightarrow (a^2+b^2+2)(ab+1)\geq 2(a^2+1)(b^2+1)\)

\(\Leftrightarrow ab(a^2+b^2)+2ab\geq 2a^2b^2+a^2+b^2\)

\(\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0\)

\(\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0\Leftrightarrow (ab-1)(a-b)^2\geq 0\)

(luôn đúng với mọi $ab\geq 1$)

Do đó ta có đpcm.

Dấu "=" xảy ra khi $ab=1$ hoặc $a=b$

Minh Hiếu
Xem chi tiết
Nguyễn Hoàng Minh
6 tháng 5 2022 lúc 22:00

Xét \(\dfrac{a}{a^2+1}+\dfrac{3\left(a-2\right)}{25}-\dfrac{2}{5}=\dfrac{a}{a^2+1}+\dfrac{3a-16}{25}=\dfrac{\left(3a-4\right)\left(a-2\right)^2}{25\left(a^2+1\right)}\ge0\)

\(\Rightarrow\dfrac{a}{a^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(a-2\right)}{25}\)

CMTT \(\Rightarrow\left\{{}\begin{matrix}\dfrac{b}{b^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(b-2\right)}{25}\\\dfrac{c}{c^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(c-2\right)}{25}\end{matrix}\right.\)

Cộng vế theo vế:

\(\Rightarrow VT\ge\dfrac{2}{5}+\dfrac{2}{5}+\dfrac{2}{5}-\dfrac{3\left(a-2\right)+3\left(b-2\right)+3\left(c-2\right)}{25}\ge\dfrac{6}{5}-\dfrac{3\left(a+b+c-6\right)}{25}=\dfrac{6}{5}\)

Dấu \("="\Leftrightarrow a=b=c=2\)

Dung Phạm
Xem chi tiết
@Nk>↑@
20 tháng 11 2018 lúc 21:35

\(a\sqrt{b-1}+b\sqrt{a-1}-1\)

\(=a\sqrt{1.\left(b-1\right)}+b\sqrt{1.\left(a-1\right)}\le a\dfrac{1+b-1}{2}+b\dfrac{1+a-1}{2}=\dfrac{ab}{2}+\dfrac{ab}{2}=ab\)dấu "=" xảy ra khi a=b=2

Hoàn Minh
Xem chi tiết
Akai Haruma
13 tháng 3 2022 lúc 0:19

Lời giải:
BĐT \(\Leftrightarrow \frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)

$\Leftrightarrow (a^2+b^2+2)(ab+1)\geq 2(a^2b^2+a^2+b^2+1)$

$\Leftrightarrow a^3b+a^2+ab^3+b^2+2ab+2\geq 2a^2b^2+2a^2+2b^2+2$

$\Leftrightarrow a^3b+ab^3+2ab\geq 2a^2b^2+a^2+b^2$

$\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0$

$\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0$

$\Leftrightarrow (a-b)^2(ab-1)\geq 0$

Điều này luôn đúng với mọi $ab\geq 1$ 

Do đó ta có đpcm 

Dấu "=" xảy ra khi $a=b$ hoặc $ab=1$

hilary
Xem chi tiết
Y
1 tháng 5 2019 lúc 11:02

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\frac{1+b^2+1+a^2}{\left(1+a^2\right)\left(1+b^2\right)}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\left(a^2+b^2+2\right)\left(1+ab\right)\ge2\left(1+a^2\right)\left(1+b^2\right)\)

\(\Leftrightarrow a^2+b^2+a^3b+ab^3+2ab+2\ge2a^2b^2+2a^2+2b^2+2\)

\(\Leftrightarrow a^3b+ab^3-2a^2b^2-a^2-b^2+2ab\ge0\)

\(\Leftrightarrow ab\left(a^2-2ab+b^2\right)-\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)

Vì bđt cuối luôn đúng với mọi \(a\ge1;b\ge1\) mà các biến đổi trên là tương đương nên bđt đầu luôn đúng

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

Lê Thị Tuyết Nhung
Xem chi tiết
soyeon_Tiểubàng giải
14 tháng 6 2017 lúc 9:56

Áp dụng bđt AM-GM cho 2 số không âm ta có:\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\)

\(=ab\sqrt{1.\left(c-1\right)}+\dfrac{bc\sqrt{9\cdot\left(a-9\right)}}{3}+\dfrac{ca\sqrt{4.\left(b-4\right)}}{2}\)\(\le ab.\dfrac{1+\left(c-1\right)}{2}+bc.\dfrac{9+\left(a-9\right)}{6}+ca.\dfrac{4+\left(b-4\right)}{4}=abc\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{4}\right)=\dfrac{11abc}{12}\left(đpcm\right)\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}1=c-1\\9=a-9\\4=b-4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}c=2\\a=18\\b=8\end{matrix}\right.\)

lương thị hạnh
Xem chi tiết
alibaba nguyễn
7 tháng 6 2017 lúc 9:50

Vì \(a\ge b\ge c\ge1\) ta có bổ đề

\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)

Lợi dụng cái trên ta được

\(\frac{1}{1+a^3}+\frac{1}{1+b^3}+\frac{1}{1+c^3}+\frac{1}{1+abc}\)

\(\ge\frac{2}{1+\sqrt{a^3b^3}}+\frac{2}{1+\sqrt{abc^4}}\ge\frac{4}{1+\sqrt[4]{a^4b^4c^4}}=\frac{4}{1+abc}\)

PS: Đề sai nên t sửa luôn đề rồi nhé

\(\Rightarrow\frac{1}{1+a^3}+\frac{1}{1+b^3}+\frac{1}{1+c^3}\ge\frac{3}{1+abc}\)

Lê Minh Huyền
Xem chi tiết
N.T.M.D
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 5 2021 lúc 20:37

\(\dfrac{9}{4}=ab+a+b+1\le\dfrac{1}{4}\left(a+b\right)^2+a+b+1\)

\(\Leftrightarrow\left(a+b\right)^2+4\left(a+b\right)-5\ge0\)

\(\Leftrightarrow\left(a+b-1\right)\left(a+b+5\right)\ge0\)

\(\Leftrightarrow a+b-1\ge0\) (do \(a+b+5>0\))

\(\Rightarrow a+b\ge1\)

b.

\(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\ge\dfrac{1}{2}.1^2=\dfrac{1}{2}\) (đpcm)