giai pt:a,\(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\) ;b,\(\sqrt{7-x}+\sqrt{x+1}=x^2-3x+13;\) c,\(x\sqrt{y-1}+2y\sqrt{x-y}\frac{3xy}{7}\)
giải pt:
a,\(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
b,\(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
giải pt:
a,\(\left(x+5\right)\left(2-x\right)=3\sqrt{x^2+3x}\)
b, \(\sqrt{5x^2+10x+1}=7-2x-x^2\)
c,\(\sqrt{2x^2+4x+1}=1-2x-x^2\)
a) ĐKXĐ: \(x^2+3x\ge0\Leftrightarrow\left[{}\begin{matrix}x\ge0\\x\le-3\end{matrix}\right.\).
PT \(\Leftrightarrow10-\left(x^2+3x\right)=3\sqrt{x^2+3x}\). (*)
Đặt \(\sqrt{x^2+3x}=a\ge0\).
\((*)\Leftrightarrow a^2+3a-10=0\)
\(\Leftrightarrow\left(a-2\right)\left(a+5\right)=0\Leftrightarrow\left[{}\begin{matrix}a=2\\a=-5\left(l\right)\end{matrix}\right.\).
Với \(a=2\Rightarrow\sqrt{x^2+3x}=2\Leftrightarrow x^2+3x-4=0\Leftrightarrow\left(x-1\right)\left(x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\left(TM\right)\\x=-4\left(TM\right)\end{matrix}\right.\).
Vậy x = 1; x = -4
giải pt:
a, \(2x^2-6x-1=\sqrt{4x+5}\)
b, \(18x^2+6x-29=\sqrt{12x+61}\)
c, \(4x^2-13x+5+\sqrt{3x+1}=0\)
c, \(4x^2-13x+5+\sqrt{3x+1}=0\)
c.
ĐLXĐ: \(x\ge-\dfrac{1}{3}\)
\(-\left(3x+1\right)+\sqrt{3x+1}+4x^2-10x+6=0\)
Đặt \(\sqrt{3x+1}=t\ge0\)
\(\Rightarrow-t^2+t+4x^2-10x+6=0\)
\(\Delta=1+4\left(4x^2-10x+6\right)=\left(4x-5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{-1+4x-5}{-2}=3-2x\\t=\dfrac{-1-4x+5}{-2}=2x-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+1}=3-2x\left(x\le\dfrac{3}{2}\right)\\\sqrt{3x-1}=2x-2\left(x\ge1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=4x^2-12x+9\left(x\le\dfrac{3}{2}\right)\\3x-1=4x^2-8x+4\left(x\ge1\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(x\ge-\dfrac{61}{12}\)
\(\Leftrightarrow36x^2+12x-58-2\sqrt{12x+61}=0\)
\(\Leftrightarrow\left(36x^2+24x+4\right)-\left(12x+61+2\sqrt{12x+61}+1\right)=0\)
\(\Leftrightarrow\left(6x+2\right)^2-\left(\sqrt{12x+61}+1\right)^2=0\)
\(\Leftrightarrow\left(6x+1-\sqrt{12x+61}\right)\left(6x+3+\sqrt{12x+61}\right)=0\)
\(\Leftrightarrow...\) tương tự câu a
a.
ĐKXĐ: \(x\ge-\dfrac{5}{4}\)
\(\Leftrightarrow4x^2-12x-2-2\sqrt{4x+5}=0\)
\(\Leftrightarrow\left(4x^2-8x+4\right)-\left(4x+5+2\sqrt{4x+5}+1\right)=0\)
\(\Leftrightarrow\left(2x-2\right)^2-\left(\sqrt{4x+5}+1\right)^2=0\)
\(\Leftrightarrow\left(2x-2-\sqrt{4x+5}-1\right)\left(2x-2+\sqrt{4x+5}+1\right)=0\)
\(\Leftrightarrow\left(2x-3-\sqrt{4x+5}\right)\left(2x-1+\sqrt{4x+5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{4x+5}=2x-3\left(x\ge\dfrac{3}{2}\right)\\\sqrt{4x+5}=1-2x\left(x\le\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+5=4x^2-12x+9\left(x\ge\dfrac{3}{2}\right)\\4x+5=4x^2-4x+1\left(x\le\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
1) giải pt:
a) \(\sqrt{2-3x}=2\)
b) \(\sqrt{x^2+4x+4}=x-2\)
c) \(\sqrt{x-3}-2\sqrt{x^2-9}=0\)
giúp mk vs ạ mk cần gấp
a) ĐKXĐ: x <= 2/3
Pt --> 2 - 3x = 4
<=> 3x = -2
<=> x = -2/3 (thỏa)
b) ĐKXĐ: x >= 2
Pt --> x^2 + 4x + 4 = x^2 - 4x + 4
<=> 8x = 0<=> x = 0(loại)
a: Ta có: \(\sqrt{2-3x}=2\)
\(\Leftrightarrow2-3x=4\)
\(\Leftrightarrow3x=-2\)
hay \(x=-\dfrac{2}{3}\)
b: Ta có: \(\sqrt{x^2+4x+4}=x-2\)
\(\Leftrightarrow\left|x+2\right|=x-2\)
\(\Leftrightarrow x+2=2-x\left(x< -2\right)\)
\(\Leftrightarrow x=0\left(loại\right)\)
Giải PT:a,\(\sqrt{x\left(x^3-3x+1\right)}=\sqrt{x\left(x^3-x\right)}\)
b,\(\sqrt{x^2-x+1}+\sqrt{x^2+x+1}=\sqrt{4-x}\)
c,\(\sqrt{x^2+4x+3}+\sqrt{x^2+x}=\sqrt{3x^2+4x+1}\)
d,\(\sqrt{\frac{x^3+1}{x+3}}+\sqrt{x+3}=\sqrt{x^2-x+1}+\sqrt{x+1}\)
giải pt:
a,\(x^2-2=5\sqrt{2x-1}\)
b,\(x^2+1=3\sqrt{3x-1}\)
a. Đề bài sai, pt không giải được
b.
ĐKXĐ: \(x\ge\dfrac{1}{3}\)
\(x^2+1-3\sqrt{3x-1}=0\)
\(\Leftrightarrow x^2-3x+1+3\left(x-\sqrt{3x-1}\right)=0\)
\(\Leftrightarrow x^2-3x+1+\dfrac{3\left(x^2-3x+1\right)}{x+\sqrt{3x-1}}=0\)
\(\Leftrightarrow\left(x^2-3x+1\right)\left(1+\dfrac{3}{x+\sqrt{3x-1}}\right)=0\)
\(\Leftrightarrow x^2-3x+1=0\)
giải pt:
a) \(4\sqrt{x-2}+\sqrt{9x-18}-\sqrt{\dfrac{x-2}{4}}=26\)
b) \(3x+\sqrt{4x^2-8x+4}=1\)
c) \(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=7\)
giúp mk vs ạ mk cần gấp
Giải PT:
a) -5x+7\(\sqrt{x}\) +12=0
b) \(\dfrac{1}{3}\)\(\sqrt{4x^2-20}\) +2\(\sqrt{\dfrac{x^2-5}{9}}\) -3\(\sqrt{x^2-5}=0\)
c) \(\sqrt{9x+27}+5\sqrt{x+3}-\dfrac{3}{4}\sqrt{16x+48}=5\)
d) \(\sqrt{49x-98}-14\sqrt{\dfrac{x-2}{49}}=3\sqrt{x-2}+8\)
a. ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow -5x-5\sqrt{x}+12\sqrt{x}+12=0$
$\Leftrightarrow -5\sqrt{x}(\sqrt{x}+1)+12(\sqrt{x}+1)=0$
$\Leftrightarrow (\sqrt{x}+1)(12-5\sqrt{x})=0$
Dễ thấy $\sqrt{x}+1>1$ với mọi $x\geq 0$ nên $12-5\sqrt{x}=0$
$\Leftrightarrow \sqrt{x}=\frac{12}{5}$
$\Leftrightarrow x=5,76$ (thỏa mãn)
d. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{49}.\sqrt{x-2}-14\sqrt{\frac{1}{49}}\sqrt{x-2}=3\sqrt{x-2}+8$
$\Leftrightarrow 7\sqrt{x-2}-2\sqrt{x-2}=3\sqrt{x-2}+8$
$\Leftrightarrow 2\sqrt{x-2}=8$
$\Leftrightarrow \sqrt{x-2}=4$
$\Leftrightarrow x=4^2+2=18$ (tm)
b. ĐKXĐ: $x^2\geq 5$
PT $\Leftrightarrow \frac{1}{3}\sqrt{4}.\sqrt{x^2-5}+2\sqrt{\frac{1}{9}}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$
$\Leftrightarrow \frac{2}{3}\sqrt{x^2-5}+\frac{2}{3}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$
$\Leftrightarrow -\frac{5}{3}\sqrt{x^2-5}=0$
$\Leftrightarrow \sqrt{x^2-5}=0$
$\Leftrightarrow x=\pm \sqrt{5}$
giải pt:
a) \(\left(\sqrt{5}+2\right)^{x-1}=\left(\sqrt{5}-2\right)^{\dfrac{x-1}{x+1}}\)
b) \(log_{x^2+3x}\left(x+3\right)-1=0\)
a.
ĐKXĐ: ...
\(\Leftrightarrow\left(\dfrac{1}{\sqrt{5}-2}\right)^{x-1}=\left(\sqrt{5}-2\right)^{\dfrac{x-1}{x+1}}\)
\(\Leftrightarrow\left(\sqrt{5}-2\right)^{1-x}=\left(\sqrt{5}-2\right)^{\dfrac{x-1}{x+1}}\)
\(\Leftrightarrow1-x=\dfrac{x-1}{x+1}\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
b.
ĐKXĐ: \(\left\{{}\begin{matrix}x+3>0\\x^2+3x>0\end{matrix}\right.\) \(\Rightarrow x>3\)
\(log_{x^2+3x}\left(x+3\right)=1\)
\(\Rightarrow x+3=x^2+3x\)
\(\Rightarrow x^2+2x-3=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\left(loại\right)\end{matrix}\right.\)