Cho tam giác ABC vuông tại A, M là trung điểm của BC
a) Chứng minh rằng: AM = BC : 2;
b) Chứng minh rằng: Nếu C = 30 độ thì AB = BC : 2
giúp tớ mng ơi, nhanh nhé
Cho tam giác ABC vuông tại A, M là trung điểm của BC
a) Chứng minh rằng: AM = BC : 2;
b) Chứng minh rằng: Nếu C = 30 độ thì AB = BC : 2
a: Gọi D là điểm đối xứng của A qua M
Xét tứ giác ABDC có
M là trung điểm của đường chéo BC
M là trung điểm của đường chéo AD
Do đó: ABDC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABDC là hình chữ nhật
Suy ra: AD=BC
mà \(AM=\dfrac{1}{2}AD\)
nên \(AM=\dfrac{1}{2}BC\)
Cho tam giác ABC có AB =AC Gọi M là trung điểm của BC
a)Chứng minh rằng tam giác AMB= tam giác AMC
b)Chứng minh rằng AM là tia phân giác của góc BAC
c)Đường thẳng đi qua B vuông góc với BA cắt đường thẳng AM tại I.Chứng minh rằng CI vuông góc với CA
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
Cho tam giác ABC có AB = AC lấy M là trung điểm của BC
a) chứng minh tam giác ABM = ACM
b)chứng minh AM vuông góc BC
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
Cho tam giác ABC cân tại A lấy điểm M là trung điểm của BC
a) Chứng minh tam giác ABM=tam giác ACM
b) Biết AB=10cm ; BC= 12 cm. Tính AM
c) qua M kẻ MK vuông góc AB ( k thuộc AB ) , Kẻ MH vuông góc AB (H thuộc AC) . Chứng minh MH = MK
d) Chứng minh AM vuông góc với KH
( Mng ơi , giúp mình câu d bài này với ạ , cảm ơn mng nhìu ạ )
mình chỉ giúp ý d theo mong muốn của bạn thôi :)
Có : AH = AK ( cái này bạn chứng minh ở câu trên chưa mình không biết; nếu chưa thì bạn chứng minh đi nhé )
=> A thuộc đường trung trực của HK
và MH=MK
=> M thuộc đường trung trực của HK
=> AM là đường trung tực của HK
=> AM ⊥ HK
Cho tam giác ABC cân tại A. Gọi M là trung điểm của BC
a) Chứng minh rằng : tam giác ABC = tam giác ACM
b0 Từ M vẽ MH vuông góc AB , MK vuông góc AC . Chứng minh rằng BH = CK
Cho tam giác ABC và M là trung điểm của đoạn thẳng BC.
a) Giả sử AM vuông góc với BC. Chứng minh rằng tam giác ABC cân tại A.
b) Giả sử AM là tia phân giác của góc BAC. Chứng minh rằng tam giác ABC cân tại A.
a)
Xét 2 tam giác vuông AMC và AMB có:
AM chung
BM=CM (gt)
=>\(\Delta AMC = \Delta AMB\) (hai cạnh góc vuông)
=> AC=AB (2 cạnh tương ứng)
=> Tam giác ABC cân tại A
b)
Kẻ MH vuông góc với AB (H thuộc AB)
MG vuông góc với AC (G thuộc AC)
Xét 2 tam giác vuông AHM và AGM có:
AM chung
\(\widehat {HAM} = \widehat {GAM}\) (do AM là tia phân giác của góc BAC)
=>\(\Delta AHM = \Delta AGM\) (cạnh huyền – góc nhọn)
=> HM=GM (2 cạnh tương ứng)
Xét 2 tam giác vuông BHM và CGM có:
BM=CM (giả thiết)
MH=MG(chứng minh trên)
=>\(\Delta BHM = \Delta CGM\)(cạnh huyền – cạnh góc vuông)
=>\(\widehat {HBM} = \widehat {GCM}\)(2 góc tương ứng)
=>Tam giác ABC cân tại A.
Cho tam giác ABC vuông tại A,M là trung điểm của BC. Chứng minh rằng AM =1/2 BC
∆ABC có M là trung điểm của BC.
Trên tia đối của tia MA lấy điểm N sao cho MN = MA.
Ta có:
ےAMB = ےNMC (đối đỉnh)
BM = CM (giả thiết)
MA = MN (dựng hình)
Suy ra: ∆MAB = ∆MNC (c.g.c)
Suy ra: NC = AB và ےMBA = ےMCN
Do ےMBA = ےMCN nên AB // NC
Suy ra ےBAC + ےACN = 180
Ta có: ےBAC = 90 nên ےACN = 90
=> ∆ABC = ∆CNA (c.g.c) vì AC là cạnh chung
AB = NC (cmt) và ےBAC = ےACN = 90
=> AN = BC
=> AM = \(\frac{1}{2}BC\)
=>CMT
Ta có: tam giác ABC vuông tại A,M là trung điểm của BC (gt) => AM là đg trung tuyến ứng vs cạnh huyền BC của tam giác vuông ABC
=>AM = 1/2 BC ( trong tam giác vuông, đg trung tuyến ứng vs cạnh huyền bằng nửa cạnh huyền )
Vậy....
Cho tam giác ABC có AB=AC , gọi M là trung điểm của cạnh BC
a)Chứng minh tam giác ABM và tam giác ACM bằng nhau
b)Chứng minh AM vuông góc với BC
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Cho tam giác ABC nhọn dựng phía ngoài tam giác 2 tam giác vuông cân tại A là tam giác ABD và tam giác ACE gọi M là trung điểm của DE chứng minh rằng
a) AM vuông góc với BC và AM=1/2 BC
b) Gọi P là trung điểm của BD; Q là trung điểm của EC và I là trung điểm của BC Tính góc IPQ
c) Chứng minh AI vuông góc với DE