Tính (a-b)^2009
Biết a+b=7; ab=12 và a>b
Cho a+b=7 và a*b=-8
a, Tính a^2+b^2
b, Tính a^3+b^3
cho các số thực a b c thỏa mãn a+b+c=0 và a^7 + b^7 + c^7 = 0 tính a^2023 + b^2023 + c^2023
cần gấp ạ -(
Ta có thể sử dụng công thức Newton về đa thức để giải bài toán này. Đặt đa thức $P(x) = (x-a)(x-b)(x-c) = x^3 - (a+b+c)x^2 + (ab+bc+ca)x - abc$.
Do $a+b+c=0$, nên $P(x) = x^3 - 3kx - abc$ với $k = \frac{ab+bc+ca}{a+b+c}$.
Ta có thể tính được $a^2+b^2+c^2 = -2(ab+bc+ca)$.
Đặt $S_n = a^n + b^n + c^n$. Ta có thể suy ra các công thức sau:
$S_1 = 0$
$S_2 = a^2 + b^2 + c^2 = -2(ab+bc+ca)$
$S_3 = 3abc$
$S_4 = (a^2+b^2+c^2)^2 - 2(a^2b^2+b^2c^2+c^2a^2) = 2(ab+bc+ca)^2 - 3abc(a+b+c)$
$S_5 = 5(ab+bc+ca)(a^2+b^2+c^2) - 5abc(a+b+c)$
$S_6 = (a^2+b^2+c^2)^3 - 3(a^2+b^2+c^2)(a^2b^2+b^2c^2+c^2a^2) + 2(a^2b^2c^2)$
$S_7 = 7(ab+bc+ca)(a^2+b^2+c^2)^2 - 14abc(a^2+b^2+c^2) + 7a^2b^2c^2$
Từ đó, ta có thể tính được $S_1, S_2, S_3, S_4, S_5, S_6$ dựa trên các giá trị đã biết.
Đặt $T_n = a^n+b^n+c^n - S_n$. Ta có thể suy ra các công thức sau:
$T_1 = 0$
$T_2 = 2S_2$
$T_3 = 3S_3$
$T_4 = 2S_2^2 - 4S_4$
$T_5 = 5S_2S_3 - 5S_5$
$T_6 = 2S_2S_4 + 3S_3^2 - 6S_6$
$T_7 = 7S_2S_5 - 14S_3S_4 + 7S_7$
Do $S_1=S_3=0$, nên $T_1=T_3=0$.
Từ $a+b+c=0$, ta có $a^2+b^2+c^2 = -2(ab+bc+ca)$. Do đó, $S_2 = 2(ab+bc+ca)$ và $S_4 = 2(ab+bc+ca)^2 - 3abc(a+b+c) = 2(ab+bc+ca)^2$.
Từ $a^7+b^7+c^7=0$, ta có $T_7 = 7S_2S_5 - 14S_3S_4 + 7S_7 = 7S_2S_5 - 14S_4S_3 + 7S_7 = 7S_7$.
Từ $T_7 = 7S_7$, ta có $S_7 = \frac{T_7}{7} = 0$.
Do đó, $T_6 = 2S_2S_4 + 3S_3^2 - 6S_6 = 2(2(ab+bc+ca))(2(ab+bc+ca)^2) + 3(abc)^2 - 6S_6 = 12(ab+bc+ca)^2 + 3(abc)^2 - 6S_6$.
Từ $T_6 = 12(ab+bc+ca)^2 + 3(abc)^2 - 6S_6$, ta có $S_6 = \frac{1}{6}(12(ab+bc+ca)^2 + 3(abc
Giải
Vì a + b + c = 0 nên a + b = -c
Ta có:
\(a^7+b^7=\left(a+b\right)\left(a^6-a^5b+a^4b^2-a^3b^3+a^2b^4-ab^5+b^6\right)\\ =-c\left(a^6-a^5b+a^4b^2-a^3b^3+a^2b^4-ab^5+b^6\right)\\ =c\left(-a^6+a^5b-a^4b^2+a^3b^3-a^2b^4+ab^5-b^6\right)\\ =c\left[-\left(a^6+6a^5b+15a^4b^2+20a^3b^3+15a^2b^4+6ab^5+b^6\right)+\left(7a^5b+14a^4b^2+21a^3b^3+14a^2b^4+7ab^5\right)\right]\\ =c\left[-\left(a+b\right)^6+7ab\left(a^4+2a^3b+3a^2b^2+2ab^3+b^4\right)\right]\\ =c\left\{-\left(a+b\right)^6+7ab\left[\left(a^2+b^2\right)^2+2ab\left(a^2+b^2\right)+3a^2b^2-2a^2b^2\right]\right\}\\ =c\left\{-\left(a+b\right)^6+7ab\left[\left(a^2+b^2\right)\left(a+b\right)^2+a^2b^2\right]\right\}\\ =c\left\{-c^6+7ab\left[\left(a^2+b^2\right)\left(a+b\right)^2+a^2b^2\right]\right\}\\ =-c^7+7abc\left[\left(a^2+b^2\right)\left(a+b\right)^2+a^2b^2\right]\\ \Rightarrow a^7+b^7+c^7=7abc\left[\left(a^2+b^2\right)\left(a+b\right)^2+a^2b^2\right]\Rightarrow7abc\left[\left(a^2+b^2\right)\left(a+b\right)^2+a^2b^2\right]=0\)TH1: \(\left(a^2+b^2\right)\left(a+b\right)^2+a^2b^2=0\)
Vì \(a^2,b^2,\left(a+b\right)^2,a^2b^2\ge0\) nên \(\left(a^2+b^2\right)\left(a+b\right)^2+a^2b^2\ge0\)
Dấu "=" xảy ra khi và chỉ khi a = b = 0
Mà a + b + c = 0 nên suy ra c = 0
Vậy \(a^{2023}+b^{2023}+c^{2023}=0\)
TH2: abc = 0
Vì abc = 0 nên sẽ có ít nhất một trong ba số a, b, c = 0
Vì a, b, c có vai trò như nhau nên không mất tính tổng quát, giả sử \(c=0\)
Mà a + b + c = 0 nên a + b =0 hay a = -b
\(\Rightarrow a^{2023}+b^{2023}+c^{2023}=0\)
Kết luận: \(a^{2023}+b^{2023}+c^{2023}=0\)
tính giá trị biểu thức
a)A=5*a+7*b biết a=7;b=5
b)B=13*a+19*b+4*a-2*b biết a+b=100
Tính giá trị biểu thức
A= (3a-b)/(2a+7) + (3b-a)/(2b-7) (Với a-b=7 ; a,b khác 3,5)
Cho A=1/3 x (b-2/5):7/5
a) Tính giá trị của số A khi b=2/3
b)Tính giá trị của số B khi A=3/7
thay b=2/3, ta có: A=1/3x(2/3-2/5):7/5=4/63
thay A= 3/7, ta có: 3/7=1/3x(b-2/5):7/5
1/3x(b-2/5):7/5=3/7
1/3x(b-2/5) =3/7x7/5
1/3x(b-2/5) = 3/5
b-2/5 = 3/5:1/3
b-2/5 = 9/5
b = 9/5+2/5
b = 11/5
a= 3x2 - 9xy + y2 -7 b= -y2 - 3x +12
a) tính a+b
b) tính a-b
a) Ta có:
\(A+B\)
\(=3x^2-9xy+y^2-7-y^2-3x+12\)
\(=3x^2-9xy+5-3x\)
b) Ta có:
\(A-B\)
\(=\left(3x^2-9xy+y^2-7\right)-\left(-y^2-3x+12\right)\)
\(=3x^2-9xy+y^2-7+y^2+3x-12\)
\(=3x^2-9xy+2y^2+3x-19\)
a) \(a+b=\left(3x^2-9xy+y^2\right)+\left(-y^2-3x+12\right)\)
\(=3x^2-9xy+y^2-y^2-3x+12\)
\(=3x^2-9xy+\left(y^2-y^2\right)-3x+12\)
\(=3x^2-9xy-3x+12\)
b) \(a-b=\left(3x^2-9xy+y^2\right)-\left(-y^2-3x+12\right)\)
\(=3x^2-9xy+y^2+y^2+3x-12\)
\(=3x^2-9xy+\left(y^2+y^2\right)+3x-12\)
\(=3x^2-9xy+2y^2+3x-12\)
Cho a >b>0 và a-b=7, ab = 60. không tính a;b hãy tính a2 - b2, a4 + b4.
\(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\(=7\cdot\sqrt{\left(a-b\right)^2+4ab}\)
\(=7\cdot\sqrt{7^2+4\cdot60}=119\)
tính (a+b)^2 biết a-b=7 và ab =10
b)tính (a-b)^2 biết a+b=9 và ab=10
\(\left(a+b\right)^2=a-b=7^2ab=10\)
\(\Rightarrow a^2-2ab+b^2=7\times8\)
\(\Rightarrow a^2+b^2+2ab=2.10=56\)
\(\Rightarrow a^2+b^2=56\)
\(\Rightarrow a^2+2ab+2b^2=56+2.10=76\)
Vậy sẽ bằng 76
b Tương tự
Tính giá trị của biểu thức a A nhân 2,4Cho a + b = 12 và a – b = 8, tính giá trị các biểu thức sau a. 10 . a + 8 . b – 6 . a – 7 . b6 với a 3,05b 5 6 7 12 a, với a 15 8
Chứng minh rằng:
(a + b)2 = (a – b)2 + 4ab
(a – b)2 = (a + b)2 – 4ab
Áp dụng:
a) Tính (a – b)2, biết a + b = 7 và a.b = 12.
b) Tính (a + b)2, biết a – b = 20 và a.b = 3.
+ Chứng minh (a + b)2 = (a – b)2 + 4ab
Ta có:
VP = (a – b)2 + 4ab = a2 – 2ab + b2 + 4ab
= a2 + (4ab – 2ab) + b2
= a2 + 2ab + b2
= (a + b)2 = VT (đpcm)
+ Chứng minh (a – b)2 = (a + b)2 – 4ab
Ta có:
VP = (a + b)2 – 4ab = a2 + 2ab + b2 – 4ab
= a2 + (2ab – 4ab) + b2
= a2 – 2ab + b2
= (a – b)2 = VT (đpcm)
+ Áp dụng, tính:
a) (a – b)2 = (a + b)2 – 4ab = 72 – 4.12 = 49 – 48 = 1
b) (a + b)2 = (a – b)2 + 4ab = 202 + 4.3 = 400 + 12 = 412.