Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
đào yến nhi
Xem chi tiết
EXO L BLINK ARMY
6 tháng 5 2020 lúc 8:27

Câu hỏi là gì bạn?

Khách vãng lai đã xóa
truong ngoc
Xem chi tiết
Lê Song Phương
27 tháng 5 2022 lúc 7:21

Xin lỗi bạn nhưng máy mình bị lỗi không vẽ hình được.

c) Tứ giác BEDC là tứ giác nội tiếp (câu a) \(\Rightarrow\widehat{BDE}=\widehat{BCE}\) hay \(\Rightarrow\widehat{BDE}=\widehat{BCQ}\) (1)

Xét (O) có \(\widehat{BCQ}\) và \(\widehat{BPQ}\) là các góc nội tiếp chắn \(\stackrel\frown{BQ}\) \(\Rightarrow\widehat{BCQ}=\widehat{BPQ}\) (2)

Từ (1) và (2) \(\Rightarrow\widehat{BDE}=\widehat{BPQ}\left(=\widehat{BCQ}\right)\)

\(\Rightarrow DE//PQ\) (2 góc đồng vị bằng nhau)

d) Kẻ tia tiếp tuyến Ax của (O) (ở đây mình lấy về phía B chứ còn bạn lấy tia tiếp tuyến này vế phía B hay phía C tùy) 

Dễ thấy \(\widehat{BAx}\) và \(\widehat{ACB}\) lần lượt là góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn \(\stackrel\frown{AB}\) \(\Rightarrow\widehat{BAx}=\widehat{ACB}\)

Tứ giác BEDC nội tiếp \(\Rightarrow\widehat{AED}=\widehat{ACB}\) (góc ngoài = góc trong đối)

\(\Rightarrow\widehat{BAx}=\widehat{AED}\left(=\widehat{ACB}\right)\) \(\Rightarrow Ax//DE\) ( 2 góc so le trong bằng nhau)

Vì \(DE//PQ\left(cmt\right)\) \(\Rightarrow Ax//PQ\)\(\left(//DE\right)\)

Mà \(Ax\perp OA\) tại A (do Ax là tiếp tuyến tại A của (O)) \(\Rightarrow OA\perp PQ\) (3)

Xét (O) có OA là 1 phần đường kính và \(OA\perp PQ\left(cmt\right)\) 

\(\Rightarrow\) OA đi qua trung điểm của PQ  (4)

Từ (3) và (4) \(\Rightarrow\) OA là trung trực của đoạn PQ

Linh Lê
Xem chi tiết
Trần Minh Hoàng
4 tháng 3 2021 lúc 19:24

Mình sửa lại đề: Cho tam giác ABC nhọn (AB < AC) nội tiếp (O). Đường cao BD, CE cắt nhau tại H. EF cắt BC tại F. AF cắt lại (O) tại K. Gọi M là trung điểm của BC.

a) Từ gt dễ thấy tứ giác BCDE nội tiếp đường tròn tâm M.

b) Tứ giác BCDE nội tiếp nên theo phương tích ta có FB . FC = FD . FE.

Tứ giác AKBC nội tiếp nên theo phương tích ta có FK . FA = FB . FC.

Vậy ta có đpcm.

c) Ta có FA . FK = FE . FD nên theo phương tích đảo ta có tứ giác AKED nội tiếp.

Gọi giao điểm thứ hai của đường tròn đường kính AH và FH là N.

Khi đó FH . FN = FE . FD = FB . FC.

Suy ra tứ giác BHNC nội tiếp.

Ta có \(\widehat{DNC}=360^o-\widehat{DNH}-\widehat{CNH}=\left(180^o-\widehat{DNH}\right)+\left(180^o-\widehat{CNH}\right)=\widehat{DEH}+\widehat{HBC}=2\widehat{HBC}=\widehat{DMC}\).

Do đó tứ giác DNMC nội tiếp.

Tương tự tứ giác ENMB nội tiếp.

Suy ra \(\widehat{DNM}+\widehat{DNA}=180^o-\widehat{ACB}+\widehat{AED}=180^o\) nên A, N, M thẳng hàng.

Từ đó \(\widehat{MHN}=\widehat{ANH}=90^o\) nên \(FH\perp AM\).

(Câu c là trường hợp đặc biệt của định lý Brocard khi tứ giác BEDC nội tiếp đường tròn tâm M).

Trần Minh Hoàng
4 tháng 3 2021 lúc 19:25

Hình vẽ: undefined

Hien Thu
Xem chi tiết
Tô Mì
3 tháng 5 2023 lúc 14:32

a) \(BE,CF\) là đường cao của \(\Delta ABC\Rightarrow\hat{BFC}=\hat{BEC}=90^o\).

Mà trong tứ giác \(BFEC\), hai góc này có đỉnh kề nhau và cùng nhìn cạnh \(BC\).

Vậy : Tứ giác \(BFEC\) nội tiếp được một đường tròn (dấu hiệu nhận biết) (đpcm).

b) Ta có : \(\hat{ABD}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AB\perp BD.\)

Mà : \(\hat{BFC}=90^o\left(cmt\right)\Rightarrow AB\perp CF.\)

Từ đó suy ra : \(BD\left|\right|CF\Rightarrow BFCD\) là hình thang.

Mà : \(\hat{BFC}=\hat{ABD}=90^o\left(cmt\right)\Rightarrow BFCD\) là hình thang vuông.

c) Ta có : \(CF\left|\right|BD\left(cmt\right)\) hay \(CH\left|\right|BD\left(1\right).\)

Mặt khác : \(\hat{ACD}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AC\perp CD\).

Và : \(BE\perp AC\left(gt\right)\)

Suy ra được : \(CD\left|\right|BE\) hay \(CD\left|\right|BH\left(2\right).\)

Từ \(\left(1\right),\left(2\right)\Rightarrow BHCD\) là hình bình hành.

Ta cũng có : \(M\) là trung điểm của \(BC\left(gt\right)\Rightarrow M\) cũng là trung điểm của \(HD\left(3\right).\)

Lại có \(O\) là trung điểm của \(AD\left(4\right)\) (tâm đường tròn).

Từ \(\left(3\right),\left(4\right)\Rightarrow OM\) là đường trung bình của \(\Delta HAD\Rightarrow OM=\dfrac{1}{2}AH\Leftrightarrow AH=2.OM\) (đpcm).

d) Cho \(I\) là giao điểm của \(OA\) và \(EF\).

Ta có : \(\hat{ACB}=\hat{ADB}\) (hai góc nội tiếp cùng chắn \(\stackrel\frown{AB}\)).

Hay : \(\hat{ACB}=\hat{BDI}\left(5\right).\)

Mặt khác : Tứ giác \(BFEC\) nội tiếp được một đường tròn (cmt) nên \(\hat{AFI}=\hat{ECB}\) (cùng bù với \(\hat{BFE}\)) hay \(\hat{AFI}=\hat{ACB}\left(6\right).\)

Từ \(\left(5\right),\left(6\right)\Rightarrow\hat{AFI}=\hat{BDI}\) hay \(\hat{AFI}=\hat{ADB}.\)

\(\Delta ABD:\hat{BAD}+\hat{ADB}=90^o\) (hai góc phụ nhau)

\(\Rightarrow\hat{FAI}+\hat{AFI}=90^o.\)

\(\Delta AFI:\hat{FAI}+\hat{AFI}+\hat{AIF}=180^o\) (tổng ba góc trong một tam giác)

\(\Leftrightarrow\hat{AIF}=180^o-\left(\hat{FAI}+\hat{AFI}\right)=180^o-90^o=90^o\)

\(\Rightarrow OA\perp EF\) (đpcm).

Tô Mì
3 tháng 5 2023 lúc 14:32

Vũ Bùi Trung Hiếu
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 2 2021 lúc 17:45

a) Gọi G là trung điểm của BC

Ta có: ΔDBC vuông tại D(BD\(\perp\)AC tại D)

mà DG là đường trung tuyến ứng với cạnh huyền BC(G là trung điểm của BC)

nên \(DG=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)

Ta có: ΔEBC vuông tại E(CE\(\perp\)AB)

mà EG là đường trung tuyến ứng với cạnh huyền BC(G là trung điểm của BC)

nên \(EG=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)

Ta có: G là trung điểm của BC(gt)

nên \(BG=CG=\dfrac{BC}{2}\)(3)

Từ (1), (2) và (3) suy ra GB=GC=GE=GD

hay B,C,D,E cùng nằm trên một đường tròn(đpcm)

Thùy Anh Nguyễn
Xem chi tiết
Trần Hồng Hạnh
Xem chi tiết
BÙI VĂN LỰC
Xem chi tiết
Omamori Katori
Xem chi tiết
Wolf 2k6 has been cursed
Xem chi tiết
An Thy
7 tháng 6 2021 lúc 16:29

a) Ta có: \(\angle AEH+\angle ADH=90+90=180\Rightarrow AEHD\) nội tiếp (1)

Vì AK là đường kính \(\Rightarrow\angle ANK=90\)

\(\Rightarrow\angle ANH+\angle ADH=90+90=180\Rightarrow ANHD\) nội tiếp (2)

Từ (1) và (2) \(\Rightarrow A,N,E,H,D\) cùng thuộc 1 đường tròn

b) Ta có: \(\angle BEC=\angle BDC=90\Rightarrow BCDE\) nội tiếp

\(\Rightarrow\angle ADE=\angle ABC\)

Ta có: \(\angle OAC=\dfrac{180-\angle AOC}{2}=90-\dfrac{1}{2}\angle AOC=90-\angle ABC\)

\(\Rightarrow\angle ADE+\angle OAC=90\Rightarrow AO\bot DE\)

c) DE cắt BC tại Q'.Q'A cắt (O) tại N'

Xét \(\Delta Q'EB\) và \(\Delta Q'CD:\) Ta có: \(\left\{{}\begin{matrix}\angle Q'EB=\angle Q'CD\\\angle CQ'Dchung\end{matrix}\right.\)

\(\Rightarrow\Delta Q'EB\sim\Delta Q'CD\left(g-g\right)\Rightarrow\dfrac{Q'E}{Q'C}=\dfrac{Q'B}{Q'D}\Rightarrow Q'B.Q'C=Q'D.Q'E\)

Xét \(\Delta Q'N'B\) và \(\Delta Q'CA:\) Ta có: \(\left\{{}\begin{matrix}\angle Q'N'B=\angle Q'CA\\\angle CQ'Achung\end{matrix}\right.\)

\(\Rightarrow\Delta Q'N'B\sim\Delta Q'CA\left(g-g\right)\Rightarrow\dfrac{Q'N'}{Q'C}=\dfrac{Q'B}{Q'A}\Rightarrow Q'B.Q'C=Q'N'.Q'A\)

\(\Rightarrow Q'N'.Q'A=Q'D.Q'E\Rightarrow AN'DE\) nội tiếp

mà AEHD nội tiếp \(\Rightarrow A,N',D,E,H\) cùng thuộc 1 đường tròn

\(\Rightarrow N\equiv N'\Rightarrow Q\equiv Q'\Rightarrow\)  đpcmundefined