Cho ΔABC vuông tại A, có AH vuông góc BC. Tính AB biết HB = 2cm; HC=8cm, AC=6cm
Bài1:Cho ΔMNP vuông tại N. Tính độ dài MN biết MP=√30cm,NP=√14 cm
Bài2:Cho ΔABC cân tại A. Biết AB=2cm. Tính BC
Bài3:Cho ΔABC vuông tại A,AH⊥BC tại H. Tính độ dài các cạnh của ΔABC biết AH=6cm,HB=4cm,HC=9cm
Bài4:Cho ΔABC vuông tại A,AH⊥BC tại H. Tính độ dài các cạnh của ΔABC biết AH=4cm,HB=2cm,HC=8cm
Bài5:Cho ΔABC vuông tại A,AH⊥BC tại H.Biết AB=4cm,HB=2cm,HC=8cm.Tính BC,AH,AC
Bài6:Cho ΔABC vuông tại A,AH⊥BC tại H.Biết AB=6cm,AC=8cm và \(\dfrac{HB}{HC}\)=\(\dfrac{9}{16}\)Tính HB,HC
Bài 3:
\(AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)
BC=13cm
=>\(AC=3\sqrt{13}\left(cm\right)\)
Cho ΔABC vuông tại A. Kẻ đường vuông góc từ A xuống BC, cắt BC tại H. Tính AH biết HB = 2cm; HC=8cm
( làm cách ngắn nhất có thể nhé!)
Ta có: Tam giác $AHB$ vuông tại $H$ ($AH⊥BC$)
nên $AH^2+HB^2=AB^2$ định lí Pytago
suy ra $AH^2=AB^2-HB^2=AB^2-2^2=AB^2-4$
Tam giác $AHC$ vuông tại $H$ ($AH⊥BC$)
nên $AH^2+HC^2=AC^2$ định lí Pytago
suy ra $AH^2=AC^2-HC^2=AC^2-8^2=AC^2-64$
Tam giác $ABC$ vuông tại $A$
nên $AB^2+AC^2=BC^2$ định lí Pytago
suy ra $AB^2+AC^2=(HB+HC)^2=(2+8)^2=100$
Có: $AH^2=AB^2-4;AH^2=AC^2-64$
Nên $2AH^2=AB^2+AC^2-4-64=100-4-64=32$
suy ra $AH^2=16$ hay $AH=8(cm)$
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HC\cdot HB\)
\(\Leftrightarrow AH^2=2\cdot8=16\)
hay AH=4(cm)
Vậy: AH=4cm
Cho ΔABC vuông tại A. Kẻ AH _|_ BC . Tính AH biết HB = 2cm, HC = 8cm
cho tam giác abc vuông tại a, ah vuông góc với bc tại h. tính bc, ah, ac biết ab = 4 cm, hb = 2cm, hc = 8 cm
Cho ΔABC vuông tại A, tia phân giác của góc B và góc C cắt nhay tại I. Kẻ IH vuông góc với BC. Biết IH= 1cm; HB= 2cm; HC= 3cm. Tính chu vi ΔABC
cho tam gi1c vuông ABC vuông tại A đường cao AH, biết AH=4cm, HB=2cm, tính HC ,AB , AC , BC, góc B và góc C
Tam giác ABC vuông tại A , theo HTL :
AH^2 = HB .HC
=> 4^2 = 2 . HC = > HC = 16 : 2 = 8 cm
BC = HB + HC = 2 + 8 = 10
AB^2 = BH . BC = 2.10 = 20
=> AB = căn 20
AC^2 = HC . BC = 8 x 10 =80
=> AC = căn 80
TAm giác ABC vuông tại A
=> SIn B = AC/BC = căn 80 /10 => B = sin-1 ( căn 80 / 10) = 63 độ 26'
=> C = 90 - B = 90 - 63 độ 26 phút
Giải
Tam giác ABC vuông tại A , theo HTL :
\(AH^2=HB.HC\)
\(\Rightarrow4^2=2HC\Leftrightarrow HC=16\div2=8\left(cm\right)\)
\(\Rightarrow BC=HB+HC=2+8=10\)
\(AB^2=BH.BC=2.10=20\)
\(\Rightarrow AB=\sqrt{20}\)
\(AC^2=HC.BC=8.10=80\)
\(\Rightarrow AC=\sqrt{80}\)
Tam giác ABC vuông tại A
\(\Rightarrow\) SIn B = \(\frac{AC}{BC}\) = \(\sqrt{\frac{8}{10}}\)\(\Rightarrow\) \(B=sin^{-1}\) \(\sqrt{\frac{80}{10}}=63^026'\)
\(\Rightarrow C=90-B=90-63^026'\)
Cho ΔABC , góc A =90 độ , AH⊥BC tại H , biết AH =2cm , HB=1cm . Tính HC , AC
Áp dụng hệ thức liên quan tới đường cao vào \(\Delta ABC\), ta có:
\(AH^2=BH.HC\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{2^2}{1}=4\left(cm\right)\)
Mặt khác, áp dụng định lý Pytago vào \(\Delta BHA\), ta có:
\(AB^2=AH^2+BH^2\Rightarrow AB=\sqrt{AH^2+BH^2}=\sqrt{2^2+1}=\sqrt{5}\left(cm\right)\)
Áp dụng hệ thức giữa đường cao và các cạnh vào \(\Delta ABC\), ta có:
\(AB.AC=AH.BC\Rightarrow AC=\dfrac{AH.BC}{AB}=\dfrac{2.\left(1+4\right)}{\sqrt{5}}=2\sqrt{5}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
nên \(HC=\dfrac{2^2}{1}=4\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AC^2=HC\cdot BC\)
nên \(AC^2=20\)
hay \(AC=2\sqrt{5}\left(cm\right)\)
cho tam giác abc vuông tại a. kẻ ah vuông góc với bc (h thuộc bc). tính ah, biết hb=2cm, hc=8cm
Cho ΔABC vuông tại A, kẻ đường cao AH. Biết BC = 5cm, = 30O
a) Giải tam giác vuông ABC, Tính AH, HB, HC.
b) Qua C kẻ đường thẳng vuông góc AC, cắt AH tại M. Chứng minh AH. AM = CH. CB
Ta có:
\(sinC=\dfrac{AB}{BC}\Rightarrow sin30^o=\dfrac{AB}{5}\)
\(\Rightarrow AB=5\cdot sin30^o=\dfrac{5}{2}\left(cm\right)\)
Mà: \(tanC=\dfrac{AB}{AC}\Rightarrow tan30^o=\dfrac{\dfrac{5}{2}}{AC}\)
\(\Rightarrow AC=\dfrac{\dfrac{5}{2}}{tan30^o}=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)
Theo hệ thức đường cao cạnh góc vuông và cạnh huyền ta có:
\(AB\cdot AC=AH\cdot BC\)
\(\Rightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{\dfrac{5}{2}\cdot\dfrac{5\sqrt{3}}{2}}{5}=\dfrac{5\sqrt{3}}{4}\left(cm\right)\)
Ta có: \(\left\{{}\begin{matrix}HB=\dfrac{AB^2}{BC}=\dfrac{\left(\dfrac{5}{2}\right)^2}{5}=\dfrac{5}{4}\left(cm\right)\\HC=\dfrac{AC^2}{BC}=\dfrac{\left(\dfrac{5\sqrt{3}}{2}\right)^2}{5}=\dfrac{15}{4}\left(cm\right)\end{matrix}\right.\)
a) ∠ABC = 90⁰ - 30⁰ = 60⁰
sinC = AB/BC
⇒ AB = BC.sinC
= 5.sin30⁰
= 5.1/2
= 5/2 (cm)
sinB = AC/BC
⇒ AC = BC.sinB
= 5.sin60⁰
= 5√3/2 (cm)
Ta có:
AH.BC = AB.AC
⇒ AH = AB.AC : BC
= 5/2 . 5√3/2 : 5
= 5√3/4 (cm)
AB² = BH.BC
⇒ BH = AB² : BC
= (5/2)² : 5
= 5/4 (cm)
⇒ CH = BC - BH
= 5 - 5/4
= 15/4 (cm)
b) Do AH ⊥ BC (gt)
⇒ CH ⊥ AM
∆ACM vuông tại C có CH là đường cao
⇒ AC² = AH . AM (1)
∆ABC vuông tại A có AH là đường cao
⇒ AC² = CH . CB (2)
Từ (1) và (2) ⇒ AH.AM = CH.CB