Cho số F=\(\dfrac{1-a}{2a+1}\)
a) Tìm a để F>0;F=0
b)Tìm a thuộc Z đr F thuộc N
cho F=\(\dfrac{3+2a^2}{a}\) tìm min F biết a)a>0 b)a>=2 c)0<a<=1/2
`a, (3+2a^2)/a = 3/a+2a.`
Áp dụng BĐT AM-GM ta có:
`3/a + 2a>=2.sqrt(3/a.2a) = 2sqrt6`.
Đẳng thức xảy ra `<=> 3=2a^2`
`<=> a^2=3/2`.
`<=> a=sqrt(3/2)`.
Cho a, b, c > 0 thỏa mãn : \(ab+bc+ca=3abc\)
Tìm GTLN : F = \(\dfrac{1}{a+2b+3c}+\dfrac{1}{2a+3b+c}+\dfrac{1}{3a+b+2c}\)
\(ab+bc+ca=3abc\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\) (do a,b,c là các số dương)
Áp dụng BĐT Bunhiacopxki dạng phân thức:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{6^2}{a+2b+3c}\)
\(\Rightarrow\dfrac{36}{a+2b+3c}\le\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}\left(1\right)\)
Tương tự: \(\left\{{}\begin{matrix}\dfrac{36}{b+2c+3a}\le\dfrac{1}{b}+\dfrac{2}{c}+\dfrac{3}{a}\left(2\right)\\\dfrac{36}{c+2a+3b}\le\dfrac{1}{c}+\dfrac{2}{a}+\dfrac{3}{b}\left(3\right)\end{matrix}\right.\)
Lấy (1) + (2) + (3) ta được:
\(36F\le6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=6.3=18\)
\(\Rightarrow F\le\dfrac{1}{2}\)
MaxF=1/2 khi \(a=b=c=1\)
tìm a để biểu thức có nghĩa:
a) \(\sqrt{\dfrac{-a}{3}}\)
b) \(-\sqrt{\dfrac{1}{a^2}}\)
c) \(\sqrt{\dfrac{\left(1-a\right)^3}{a^2}}\)
d) \(\sqrt{\dfrac{a^{2^{ }}+1}{1-2a}}\)
e) \(\sqrt{a^2-1}\)
f) \(\sqrt{\dfrac{2a-1}{2-a}}\)
a) Để biểu thức có nghĩa thì \(\dfrac{-a}{3}\ge0\Rightarrow a\le0\)
b) Để biểu thức có nghĩa thì \(\dfrac{1}{a^2}\ge0\) (luôn đúng)
c) Để biểu thức có nghĩa thì \(\dfrac{\left(1-a\right)^3}{a^2}\ge0\Rightarrow\left\{{}\begin{matrix}\left(1-a\right)^3\ge0\\a\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}1-a\ge0\\a\ne0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a\le1\\a\ne0\end{matrix}\right.\)
d) Để biểu thức có nghĩa thì \(\dfrac{a^2+1}{1-2a}\ge0\Rightarrow1-2a>0\Rightarrow a< \dfrac{1}{2}\)
e) Để biểu thức có nghĩa thì \(a^2-1\ge0\Rightarrow a^2\ge1\Rightarrow\left|a\right|\ge1\)
f) Để biểu thức có nghĩa thì \(\Rightarrow\dfrac{2a-1}{2-a}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2a-1\ge0\\2-a>0\end{matrix}\right.\\\left\{{}\begin{matrix}2a-1\le0\\2-a< 0\end{matrix}\right.\end{matrix}\right.\)
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}a\ge\dfrac{1}{2}\\a< 2\end{matrix}\right.\\\left\{{}\begin{matrix}a\le\dfrac{1}{2}\\a>2\end{matrix}\right.\left(l\right)\end{matrix}\right.\Rightarrow\dfrac{1}{2}\le a< 2\)
BT1:
a) 2x-1=0 ; b) 3x-2=5+x ; c) 2(x-3)-4=3(1+x)-5x ; d) \(\dfrac{x+1}{2}\)- \(\dfrac{2x}{3}\)=1 ; e) x(x-2)+3(x-2)=0 ; f) \(\dfrac{x+1}{x-1}\)+ \(\dfrac{3}{x}\)= \(\dfrac{x^2+2}{x^2-x}\)
BT2:
a) Cho a>b, chứng minh rằng 2a+1>2b-3
b) Tìm x để giá trị của biểu thức 3x-1 ≤ giá trị biểu thức x+2
c) Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số (mng giúp mình giải phương trình thôi nha)
2x+3>0 ; 3x+1<x-4 ; 2(x+1)+3≥ 3(5-x) ; \(\dfrac{x}{3}\)-\(\dfrac{x+1}{5}\)>1
BT3: Giải bài toán bằng cách lập phương trình
1 ô tô đi từ A đến B với vận tốc 50km/h. Đến B, ô tô nghỉ lại 1h, sau đó quay trở về A với vận tốc 60km/h. Tổng thời gian đi và về(gồm thời gian nghỉ lại) là 6h30p. Tính quãng đường AB?
Mng giúp mình với mai mình kiểm tra rồi ạ, mình cảm ơn
Cho biểu thức:
\(F=\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\)
a) Rút gọn F
b) Tìm a để F nhỏ nhất
c) Tìm a để \(\sqrt{F}>F\)
d) So sánh F với \(\dfrac{1}{\sqrt{a}}\)
Tìm a để các hàm số f ( x ) = 4 x + 1 - 1 a x 2 + ( 2 a + 1 ) x k h i x ≠ 0 3 k h i x = 0 liên tục tại x = 0.
A. 1 2
B. 1 4
C. - 1 6
D. 1
- Ta có:
→ Hàm số không liên tục tại x = 0.
Chọn C.
2. Một hàm số được cho bằng bảng sau :
X | -2 | -1 | \(-\dfrac{1}{2}\) | 0 | \(\dfrac{1}{2}\) | 1 | 2 | 2 |
Y | 1 | \(\dfrac{1}{2}\) | \(\dfrac{1}{4}\) | 0 | \(-\dfrac{1}{4}\) | \(-\dfrac{1}{2}\) | -1 | \(-1\dfrac{1}{2}\) |
a) Tìm f( 1); − f(1) ; f(2).
b) Hàm số này có thể được cho bằng công thức nào ?
Cho hàm số f(x)=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Tìm các g/trị của x để hàm số xác định
b) Tính f(\(4-2\sqrt{3}\)) và f(\(a^2\)) với a< -1
c) Tìm x sao cho f(x)=f(\(x^2\))