Cho tam giác ABC vuông tại A có đường cao AH , đường trung tuyến AM và đường phân giác AD , biết AB = 21 cm ; BC = 35 cm.
a) Giải tam giác vuông ABC
b) Tính độ dài AH; HC ; AM và AD
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH, trung tuyến AM và đường phân giác
trong AD. Biết AB=21 cm BC = 35cm
a) Giải tam giác ABC. | b) Tính độ dài AH, HC, AM, AD |
a: Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=35^2-21^2=784\)
hay AC=28cm
Xét ΔBAC vuông tại A có
\(\sin\widehat{ABC}=\dfrac{AC}{BC}=\dfrac{4}{5}\)
nên \(\widehat{ABC}\simeq53^0\)
\(\Leftrightarrow\widehat{ACB}=37^0\)
Câu 9. Cho tam giác ABC vuông tại A, đường cao AH, phân giác AD, trung tuyến AM. Biết AB = 6 cm, AM = 5cm. Độ dài AH, BH, HM là
Gấp !!!
BC=2*AM=10cm
AC=căn 10^2-6^2=8cm
AH=6*8/10=4,8cm
BH=AB^2/BC=6^2/10=3,6cm
MH=căn 5^2-4,8^2=1,4cm
Cho tam giác ABC vuông tại A có đường cao AH và đường trung tuyến AM .Biết AH = 3cm, HB = 4 cm. Hãy tính AB AC AM , và diện tích tam giác ABC .
Xét tam giác ABH vuông tại H, ta có:
\(AB^2=AH^2+BH^2\)\(=3^2+4^2=25\)
\(\Rightarrow AB=5\left(cm\right)\)
Xét tam giác ABC vuông tại A, theo hệ thức lượng ta có:
\(AH^2=AB\cdot AC\Rightarrow AC=\dfrac{AH^2}{AB}=\dfrac{3^2}{5}=1,8\left(cm\right)\)
Do đó:\(BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+1,8^2}\simeq5,3\left(cm\right)\)
AM là đường trung tuyến trong tam giác vuông ABC
=> AM=\(\dfrac{1}{2}\) BC= 2,65 \(\left(cm\right)\)
Cho tam giác ABC vuông tại A có đường cao AH và đường trung tuyến AM .Biết AH = 3cm, HB = 4 cm. Hãy tính AB AC AM , và diện tích tam giác ABC .
Bài 1: Cho tam giác ABC vuông tại A có đường phân giác BD, đường trung tuyến AM, đường cao AH.
a) Tính AB, BC, AH, AM. Biết AD = 3 cm; CD = 5 cm.
b) Gọi I, K lần lượt là hình chiếu của H trên AB, AC. Chứng minh rằng AM vuông góc vs IK.
a) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(Gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{AB}{3}=\dfrac{BC}{5}\)
Ta có: AD+CD=AC(D nằm giữa A và C)
nên AC=3+5=8(cm)
Đặt \(\dfrac{AB}{3}=\dfrac{BC}{5}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}AB=3k\\BC=5k\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\left(3k\right)^2+8^2=\left(5k\right)^2\)
\(\Leftrightarrow9k^2+64=25k^2\)
\(\Leftrightarrow16k^2=64\)
\(\Leftrightarrow k^2=4\)
hay k=2
Suy ra: \(\left\{{}\begin{matrix}AB=3\cdot k=3\cdot2=6\left(cm\right)\\BC=5\cdot k=5\cdot2=10\left(cm\right)\end{matrix}\right.\)
Vậy: AB=6cm; BC=10cm
Câu 7: cho tam giác ABC vuông tại A, đường cao AH, phân giác AD, trung tuyến AM. Biết ABv= 24 cm, AM = 20 cm. Độ dài AC, BH, HM là
Gấp !!!
Vì `\triangle ABC` vuông tại `A` có `AM` là đường trung tuyến
`=>AM=MC=1/2BC =>BC =40(cm)`
`@` Xét `\triangle ABC` vuông tại `A` có: `AC=\sqrt{BC^2 -AB^2}=32(cm)` (Py-ta-go)
`@` Mặt khác: Ta có `AH` là đường cao
`=>BH=[AB^2]/[BC]` (Ht giữa cạnh và đường cao)
`=>BH =14,4(cm)`
`@` Ta có: `HM =BC-BH-MC=5,6(cm)`
Cho tam giác ABC vuông tại A có đường cao AH, trung tuyến AM, Phân giác AD. Biết AB=21cm , BC=35cm.
a) Giải tam giác ABC.
b) tính độ dài AH,CH,AM.
c) tính độ dài AD.
Cho tam giác ABC vuông tại A có đường cao AH và đường trung tuyến AM. Biết AH=3cm; HB=4cm. Hãy tính AB,AC,AM và diện tích tam giác ABC
\(HC=\dfrac{3^2}{4}=2.25\left(cm\right)\)
BC=HB+HC=6,25(cm)
AM=BC/2=3,125(cm)
\(AB=\sqrt{4\cdot6.25}=5\left(cm\right)\)
\(AC=\sqrt{6.25^2-5^2}=3.75\left(cm\right)\)
+ ) áp dụng định lí Pytago trong tam giác vuông \(ABH\) vuông tại \(H\) , ta có :
\(AB^2=AH^2+HB^2=3^2+4^2=25\Rightarrow AB=5\left(cm\right)\)
+ ) áp dụng hệ thức về cạnh và đường cao trong tam giác vuông \(ABC\) với \(AH\) là đường cao , ta có :
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{AH^2}-\dfrac{1}{AB^2}\)
\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{3^2}-\dfrac{1}{5^2}=\dfrac{16}{225}\)
\(\Rightarrow AC=\dfrac{15}{4}\left(cm\right)\)
+ ) áp dụng định lí Pytago trong tam giác vuông \(ABC\) vuông tại \(A\) , ta có :
\(BC^2=AB^2+AC^2=5^2+\left(\dfrac{15}{4}\right)^2=\dfrac{625}{16}\)
\(\Rightarrow BC=\dfrac{25}{4}\left(cm\right)\)
+ ) tam giác \(ABC\) vuông tại \(A\) có trung tuyến \(AM\) nên ta có :
\(AM=\dfrac{1}{2}BC=\dfrac{25}{8}\left(cm\right)\)
Cho tam giác ABC vuông ở A . Vẽ đường cao AH . Trung tuyến AM . Kẻ đường phân giác góc A cắt đường trung trực cạnh BC tại D . Từ D kẻ DE vuông góc với AB tại D , DF vuông góc với AC tại F
a) CM : AD là phân giác góc HAM
b) CM : 3 điểm E , M , F thẳng hàng
c) CM : Tam giác BDC vuông cân
Cho tam giác ABC vuông tại A , đường cao AH , trung tuyến AM .Biết AH =4 cm , AM = 4,1 cm . Tỉ số độ dài 2 canh goc vuông AB và AC của tam giác ABC = ?