Giúp mình với ạ
Bài 2: Cho tam ABC cân tại A, vẽ AD BC tại D.
a/ Chứng minh BD = CD.
b/ Vẽ DH AB tại H và DK AC tại K. Chứng minh DH = DK.
c/ Chứng minh HK // BC.
d/ Cho AB = 10cm; BC = 12cm. Tính AD
Cảm ơn mng nhìu~
Cho tam giác ABC cân tại A, vẽ AD vuông góc BC (D thuộc BC).
a) Chứng minh BD=CD.
b) Vẽ DH vuông góc AB tại H và DK vuông góc AC tại K. Chứng minh DH= DK
c) Chứng minh HK // BC
d) Cho AB = 10cm; BC = 12cm. Tính AD
a) Xét \(\bigtriangleup ABC\) cân tại A, có:
AD là đường cao của cạnh BC
=> AD cũng là đường trung tuyến của cạnh BC
=> D là trung điểm của cạnh BC
Hay: BD = CD
b) Ta có: AD là đường cao của \(\bigtriangleup ABC\) cân tại A
Nên: AD cũng là đường phân giác của \(\bigtriangleup ABC\)
=> \(\widehat{BAD}=\widehat{CAD}\)
Hay: \(\widehat{HAD}=\widehat{KAD}\)
Xét \(\bigtriangleup AHD\) và \(\bigtriangleup AKD\):
Ta có: \(\left\{\begin{matrix} \widehat{AHD}=\widehat{AKD}=90^{\circ}(DH\perp AB,DK\perp AC) & & & \\ AD:chung & & & \\ \widehat{HAD}=\widehat{KAD}(cmt) & & & \end{matrix}\right.\)
Vậy: \(\bigtriangleup AHD=\bigtriangleup AKD(ch-gn)\)
=> DH = DK
c) \(\bigtriangleup AHD=\bigtriangleup AKD(cmt)\)
=> AH = AK
=> \(\bigtriangleup AHK\) cân tại A
=> \(\widehat{AKH}=\frac{180^{\circ}-\widehat{BAC}}{2}\)
Mà: \(\widehat{ACB}=\frac{180^{\circ}-\widehat{BAC}}{2}\)
Nên: \(\widehat{AKH}=\widehat{ACB}\)
(nằm ở vị trí đồng vị)
=> HK // BC
d) Ta có: BD = DC = \(\dfrac{BC}{2}=\dfrac{12}{2}=6\) cm
Xét \(\bigtriangleup ADB\) vuông tại D (AD đường cao), ta có:
\(AD^2=AB^2-BD^2\left(Py-ta-go\right)\)
\(AD^2=10^2-6^2=64\)
\(\Rightarrow AD=\sqrt{64}=8cm\)
Giúp mình với ạ
Bài 1: Cho tam giác ABC, vẽ AH BC tại H. Biết AB = 15cm; AC= 20cm; AH= 12cm.
a/ Tính độ dài BH; HC.
b/ Chứng tỏ tam giác ABC là tam giác vuông.
Bài 2: Cho tam ABC cân tại A, vẽ AD BC tại D.
a/ Chứng minh BD = CD.
b/ Vẽ DH AB tại H và DK AC tại K. Chứng minh DH = DK.
c/ Chứng minh HK // BC.
d/ Cho AB = 10cm; BC = 12cm. Tính AD.
Cảm ơn mng nhìu
Bài 1:
a) Xét \(\Delta ABH\) vuông tại \(H\left(gt\right)\) có:
\(AH^2+BH^2=AB^2\) (định lí Py - ta - go).
=> \(12^2+BH^2=15^2\)
=> \(BH^2=15^2-12^2\)
=> \(BH^2=225-144\)
=> \(BH^2=81\)
=> \(BH=9\left(cm\right)\) (vì \(BH>0\)).
+ Xét \(\Delta ACH\) vuông tại \(H\left(gt\right)\) có:
\(AH^2+HC^2=AC^2\) (định lí Py - ta - go).
=> \(12^2+HC^2=20^2\)
=> \(HC^2=20^2-12^2\)
=> \(HC^2=400-144\)
=> \(HC^2=256\)
=> \(HC=16\left(cm\right)\) (vì \(HC>0\)).
b) Ta có: \(BC=BH+HC.\)
=> \(BC=9+16\)
=> \(BC=25\left(cm\right).\)
+ Xét \(\Delta ABC\) có:
\(AB^2+AC^2=15^2+20^2\)
=> \(AB^2+AC^2=225+400\)
=> \(AB^2+AC^2=625\) (1).
\(BC^2=25^2\)
=> \(BC^2=625\) (2).
Từ (1) và (2) => \(AB^2+AC^2=BC^2\left(=625\right).\)
=> \(\Delta ABC\) vuông tại \(A\) (định lí Py - ta - go đảo) (đpcm).
Chúc bạn học tốt!
Cho tam giác ABC cân tại A, vẽ AD ^ BC (D BC).
a) Chứng minh BD = CD.
b) Vẽ DH ^ AB tại H và DK ^ AC tại K. Chứng minh DH = DK.
c) Chứng minh HK // BC.
d) Cho AB = 10 cm; BC = 12 cm. Tính AD.
Làm ơn giúp tớ với ạ, mỗi khi đăng bài để hỏi thì chẳng có ai trả lời cả,Cảm ơn nhiều...
bạn tự vẽ hình, ghi gt và kl nha.
MÌNH GHI TẮT NHA: TG là tam giác, ^ là mũ
a. Xét 2 TG vuông ADB và ADC, có:
AB = AC ( gt)
AD cạnh chung
=> TG vuông ADB = TG vuông ADC ( ch - cgv)
=> BD = CD ( 2 cạnh tương ứng)
d. Ta có: BD = 1/2 x BC = 1/2 x 12 = 6(cm)
áp dụng d/l pytago cho TG vuông ADB và ABC;
ta có: AD^2 = AB^2 + AC^2
hay AD^2 = 10^2 + 6^2
= 100+36
= 136
=. AD = căn 136
cho tam giác ABC cân tại a vẽ ad vuông góc bc
a)chứng minh tam giác ADB=tam giác ADC, tu dó suy ra AD là tia phân giác của góc A
b)ve DHvuông góc với AB tại H và DK vuoong góc voi AC tại K . chứng minh DH = DK
c) chứng minh HK song song với BC
d) cho AB=10cm, BC=12cm tính dộ dai AD
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!111
a, xét tam giác tam giác ADB và am giác ADC:
Ab=ac (gt)
ad chung
góc adc = góc adb=90 độ (gt)
Bài 1 : Cho tam giác ABC cân tại A vẽ AD ^ BC ( D thuộc BC)
a) Chứng minh BD = CD
b) Vẽ DH cắt AB tại H và DK cắt AC tại K . Chứng minh DH = Dk
c) Chứng minh HK // BC
d) Cho AB = 10 cm ; BC = 12 cm. Tính AD
Bài 2: Cho tam giác DEF có DE = DF = 5cm, EF= 6 cm . Gọi I là trung điểm của EF
a) Chứng minh tam giác DEI = tam giác DFI
b) Tính độ dài đoạn DI
c) Kẻ IH vuông góc với DE ( H thuộc DE) . Kẻ IJ vuông góc với DF ( J thuộc DF). Chứng minh : tam giác IHJ là tam giác cân
d) Chứng minh HJ song song EF
Mọi người ơi giúp em với ạ !
tu ve hinh :
cau b la vuong goc phai k
a, tamgiac ABC can tai A(gt) => AB = AC va goc ABC = goc ACB (dn)
goc ADB = goc ADC do AD | BC (GT)
=> tamgiac ADB = tamgiac ADC (ch - gn)
=> BD = DC (dn)
b, xet tamgiac BHD va tamgiac CKD co : BD = DC (Cau a)
goc ABC = goc ACB (cau a)
goc BHD = goc DKC = 90 do HD | AB va HK | AC (gt)
=> tamgiac BHD = tamgiac CKD (ch - gn)
=> HD = DK (dn)
c, xet tamgiac AHD va tamgiac AKD co : AD chung
HD = DK (cau b)
goc AHD = goc AKD = 90 do HD | AB va HK | AC (gt)
=> tamgiac AHD = tamgiac AKD (ch - cgv)
=> tamgiac AHK can tai A (dn)
=> goc AHK = (180 - goc BAC) : 2
tamgiac ABC can tai A (gt) => goc ABC = (180 - goc BAC) : 2
=> goc AHK = goc ABC 2 goc nay dong vi
=> HK // BC (tc)
d, tu ap dung py-ta-go
a, tamgiac ABC can tai A(gt) => AB = AC va goc ABC = goc ACB (dn)
goc ADB = goc ADC do AD | BC (GT)
=> tamgiac ADB = tamgiac ADC (ch - gn)
=> BD = DC (dn)
b, xet tamgiac BHD va tamgiac CKD co : BD = DC (Cau a)
goc ABC = goc ACB (cau a)
goc BHD = goc DKC = 90 do HD | AB va HK | AC (gt)
=> tamgiac BHD = tamgiac CKD (ch - gn)
=> HD = DK (dn)
c, xet tamgiac AHD va tamgiac AKD co : AD chung
HD = DK (cau b)
goc AHD = goc AKD = 90 do HD | AB va HK | AC (gt)
=> tamgiac AHD = tamgiac AKD (ch - cgv)
=> tamgiac AHK can tai A (dn)
=> goc AHK = (180 - goc BAC) : 2
tamgiac ABC can tai A (gt) => goc ABC = (180 - goc BAC) : 2
=> goc AHK = goc ABC 2 goc nay dong vi
=> HK // BC (tc)
d, tu ap dung py-ta-go
a) Xét ΔABD và ΔACD có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))
AD chung
Do đó: ΔABD=ΔACD(c-g-c)
Suy ra: DB=DC(hai cạnh tương ứng)
b) Xét ΔDBH vuông tại H và ΔDCK vuông tại K có
DB=DC(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔDBH=ΔDCK(cạnh huyền-góc nhọn)
Suy ra: DH=DK(hai cạnh tương ứng)
Cho tam giác ABC cân tại A, tia phân giác góc A cắt BC tại D.
a. Chứng minh: DB=DC
b. Kẻ DH vuông góc với AB ( H thuộc AB); DK vuông góc AC ( K thuộc AC). Chứng minh DH=DK
c. Chứng minh HK//BC
cho △ABC cân tại A. Kẻ trung tuyến AD
a)Chứng minh: △ ADB = △ ADC (1đ)
b) Từ D kẻ DH ⊥ AB ( H∈AB ) và DK ⊥ AC (K∈AC). Chứng minh: AH=AK, HK//BC (1,5đ), Vẽ hình
a, Xét tam giác ADB và tam giác ADC có
AD _ chung ; AB = AC
Vậy tam giác ADB = tam giác ADC ( ch-cgv )
b, ^DAB = ^DAC ( 2 góc tương ứng )
Xét tam giác AHD và tam giác AKD có
^HAD = ^KAD ; AD _ chung
Vậy tam giác AHD = tam giác AKD (ch-gn)
=> AH = AK ( 2 cạnh tương ứng )
Ta có AH/AB = AK/AC => HK // BC ( Ta lét đảo )
Cho tam giác ABC có các góc đều nhọn và AB < AC. Phân giác góc A cắt cạnh BC tại D. Vẽ BE vuông góc với AD tại E. Tia BE cắt cạnh AC tại F a)Chứng minh AB = AF b) Qua F vẽ đường thẳng song song với BC , cắt AE tại H lấy điểm K nằm giữa D và C sao cho FH = DK. Chứng minh: DH = KF và DH song song với KF c) Chứng minh: Góc ABC > Góc C
GIÚP MÌNH NHA MÌNH CẦN GẤP