Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Demon
Xem chi tiết
xin vĩnh biệt lớp 9
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 1 2023 lúc 21:56

a: Xét tứ giác AEHF có

góc AEH+góc AFH=180 độ

=>AEHF là tứ giác nội tiếp

Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC là tứ giác nội tiếp

b: Xét (O) có

ΔABK nội tiếp

AK là đường kính

=>ΔABK vuông tại B

=>BK//CH

Xét (O) có

ΔACK nội tiếp

AK là đường kính

=>ΔACK vuông tại C

=>CK//BH

Xét tứ giác BHCK có

BH//CK

BK//CH

=>BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

=>I là trung điểm của BC

Minh Thông Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 1 2022 lúc 11:39

1: Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BFEC là tứ giác nội tiếp

Xét tứ giác AEDB có

\(\widehat{AEB}=\widehat{ADB}=90^0\)

Do đó: AEDB là tứ giác nội tiếp

2: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{EAB}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC

Suy ra: AE/AF=AB/AC

hay \(AE\cdot AC=AB\cdot AF\)

Lyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 4 2023 lúc 14:31

góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

UYÊN
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 11 2023 lúc 19:51

Xét tứ giác AFHE có

\(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)

=>AFHE là tứ giác nội tiếp đường tròn đường kính AH

=>I là trung điểm của AH

=>IA=IH=IE=IF

Xét tứ giác BFEC có

\(\widehat{BFC}=\widehat{BEC}=90^0\)

=>BFEC là tứ giác nội tiếp đường tròn đường kính BC

=>M là trung điểm của BC

=>MB=MC=ME=MF

Gọi O là giao điểm của AH với BC

Xét ΔABC có

BE,CF là đường cao

BE cắt CF tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại O

ΔBHO vuông tại O

=>\(\widehat{OHB}+\widehat{OBH}=90^0\)

mà \(\widehat{OBH}+\widehat{OCE}=90^0\)(ΔBEC vuông tại E)

nên \(\widehat{OHB}=\widehat{OCE}\)

mà \(\widehat{OHB}=\widehat{IHE}\)(hai góc đối đỉnh)

nên \(\widehat{IHE}=\widehat{OCE}\)

IH=IE

=>\(\widehat{IHE}=\widehat{IEH}\)

mà \(\widehat{IHE}=\widehat{OCE}\)

nên \(\widehat{IEH}=\widehat{OCE}=\widehat{ECB}\)

ME=MB

=>ΔMEB cân tại M

=>\(\widehat{MEB}=\widehat{MBE}\)

=>\(\widehat{MEB}=\widehat{EBC}\)

\(\widehat{IEM}=\widehat{IEH}+\widehat{MEH}\)

\(=\widehat{EBC}+\widehat{ECB}\)

\(=90^0\)

=>ME là tiếp tuyến của (I)

Xuân Huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 4 2023 lúc 22:46

a: góc BDH+góc BFH=180 độ

=>BDHF nội tiếp

góc BFC=góc BEC=90 dộ

=>BFEC nội tiếp

b: góc FEB=góc BAD

góc DEB=góc FCB

mà góc BAD=góc FCB

nên góc FEB=góc DEB

=>EB là phân giác của góc FED

c: Kẻ tiếp tuyến Ax của (O)

=>góc xAC=góc ABC=góc AEF

=>Ax//FE

=>FE vuông góc OA

=>OA vuông góc IK

Đỗ’s Dũng’s
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 2 2021 lúc 22:30

a) Xét tứ giác AEHF có 

\(\widehat{HFA}\) và \(\widehat{HEA}\) là hai góc đối

\(\widehat{HFA}+\widehat{HEA}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Ngat Nguyen
30 tháng 7 2021 lúc 11:51

Ngat Nguyen
30 tháng 7 2021 lúc 11:54

undefined

Quang
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 10 2023 lúc 8:49

loading...  loading...  loading...  

Ngọc Ngọc
Xem chi tiết
xin vĩnh biệt lớp 9
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 2 2023 lúc 10:45

a: Xét tứ giác AEHF có

góc AEH+góc AFH=180 độ

=>AEHF là tứ giác nội tiếp

Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC là tứ giác nội tiếp

b: Xét (O) có

ΔABK nội tiếp

AK là đường kính

=>ΔABK vuông tại B

=>BK//CH

Xét (O) có

ΔACK nội tiếp

AK là đường kính

=>ΔACK vuông tại C

=>CK//BH

Xét tứ giác BHCK có

BH//CK

BK//CH

=>BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

=>I là trung điểm của BC