CHO TAM GIÁC ABC TRÊN TIA ĐỐI TIA BC LẤY BD=BA.TRÊN TIA ĐỐI TIA CB LẤY CA=CE .VẼ BH VUÔNG GÓC AD VÀ CK VUÔNG GÓC AE .CHỨNG MINH;
A> HK//DE
B> HK CẮT AB TẠI M VÀ CẮT AC TẠI N . CHỨNG MINH MN//BC VÀ MN=BC/2
C>TÍNH HK BIẾT CHU VI TAM GIÁC ABC=18CM
Tam giác ABC, trên tia đối của tia BC lấy điểm D sao cho BD=BA.Trên tia đối của tia CB lấy điểm E sao cho CE=CA .Kẻ BH vuông góc AD,CK vuông góc AE.
CM: a) AH=HD
b) HK=BC
Bài 1: Tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD. Kẻ CK vuông góc với AE. Chứng minh rằng :
a) Chứng minh: DADE cân và BH = CK
b) ABH = ACK
c) Gọi O là giao điểm của HB và KC. Chứng minh OBC cân.
d) Chứng minh AO là tia phân giác của góc DAE
e) Gọi I là trung điểm của BC. Chứng minh: A, I, O thẳng hàng.
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó; ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔABH=ΔACK
Suy ra: BH=CK
b: Ta có: ΔABH=ΔACK
nên \(\widehat{ABH}=\widehat{ACK}\)
c: Ta có: \(\widehat{OBC}=\widehat{HBD}\)
\(\widehat{OCB}=\widehat{KCE}\)
mà \(\widehat{HBD}=\widehat{KCE}\)
nên \(\widehat{OBC}=\widehat{OCB}\)
hay ΔOBC cân tại O
c1
cho tam giác abc cân tại a trên tia đối tia bc lấy d và trên tia đối tia cb lấy e sao cho bd=ce vẽ bh vuông góc ad và ck vuông góc ae chứng minh bc song song hk
câu này khó quá nên mình ko làm đc các bạn giúp mình nha!!
do \(\Delta ABC\)cân tại A và \(BD=CE\)\(\Rightarrow\Delta ADE\)cũng cân tại A \(\Rightarrow AD=AE\left(4\right);\widehat{ADE}=\widehat{AED}\left(1\right)\)Xét hai tam giác vuông \(\Delta DHB,\Delta EKC\)có \(BD=CE\left(2\right);\widehat{DHB}=\widehat{EKC}=90^0\left(3\right)\)tứ 1,2,3 ta có \(\Delta DHB=\Delta EKC\Rightarrow DH=EK\left(5\right)\)tỪ 4,5 CÓ TỈ SỐ \(\frac{AH}{AD}=\frac{AK}{AE}\Rightarrow HK\downarrow\uparrow BC\)(dpcm)
Cho tam giác ABC cân tại A. Trên tia đối của tai BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông với AD, kẻ CK vuông góc với AE. Chứng minh rằng: BH = CK
Vì ΔABC cân tại A nên∠(ABC) =∠(ACB) (tính chất tam giác cân)
Ta có: ∠(ABC) +∠(ABD) =180o(hai góc kề bù)
∠(ACB) +∠(ACE) =180o(hai góc kề bù)
Suy ra: ∠(ABD) =∠(ACE)
Xét ΔABD và ΔACE, ta có:
AB = AC (gt)
∠(ABD) =∠(ACE) (chứng minh trên)
BD=CE (gt)
Suy ra: ΔABD= ΔACE (c.g.c)
⇒∠D =∠E (hai góc tương ứng)
Xét hai tam giác vuông ΔBHD và ΔCKE, ta có:
∠(BHD) =∠(CKE) = 90º
BD=CE (gt)
∠D =∠E (chứng minh trên)
Suy ra: ΔBHD= ΔCKE (cạnh huyền – góc nhọn)
Suy ra: BH = CK (hai cạnh tương ứng)
Cho tam giác ABC , trên tia đối của tia BC lấy D sao cho BD= BA . Trên tia đối CB lấy E sao cho CE = CA . Kẻ BH vuông góc với AD, CK vuông góc với AE
a, AH=HD
b, HK // BC
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD, kẻ CK vuông góc với AE. Chứng minh rằng:
a, BH = CK
B, △ABH = △ACK
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE và \(\widehat{D}=\widehat{E}\)
Xét ΔHBD vuông tại H và ΔKEC vuông tại K có
BD=CE
\(\widehat{D}=\widehat{E}\)
Do đó: ΔHBD=ΔKCE
Suy ra: BH=CK
b: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do dó: ΔABH=ΔACK
Cho tam giác ABC cân tại A. Trên tia đối BC lấy điểm D, Trên tia đối của tia CB lấy điểm E sao cho ∠BAD = ∠CAE. Kẻ BH vuông góc với AD (H ∈ AD). kẻ CK vuông góc với AE (K ∈ AE). Chứng minh rằng : BD = CE
+) Do tam giác ABC cân tại A nên ∠ABC = ∠ACB (1)
Lại có; ∠ABC + ∠ABD = 180º ( hai góc kề bù) (2)
∠ACB + ∠ACE = 180º ( hai góc kề bù) (3)
Từ (1); (2); (3) suy ra: ∠ABD = ∠ACE
+) Xét ΔABD và ΔACE có:
∠DAB = ∠EAC ( giả thiết)
AB = AC (vì tam giác ABC cân tại A)
∠ABD = ∠ACE ( chứng minh trên )
⇒ ΔABD = ΔACE (g.c.g)
⇒ BD = CE ( hai cạnh tương ứng)..
Bài 3.
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấyđiểm E sao cho BD = CE. Kẻ BH vuông góc với AD, kẻ CK vuông góc với AE. Chứng minh rằng:
a) BH = CK b) ∆ABH = ∆ACK
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó:ΔABD=ΔACE
Suy ra: \(\widehat{D}=\widehat{E}\)
Xét ΔHBD vuông tại H và ΔKCE vuông tại K có
BD=CE
\(\widehat{D}=\widehat{E}\)
Do đó: ΔHBD=ΔKCE
Suy ra: BH=CK
b: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
BH=CK
Do đó:ΔABH=ΔACK
cho tam giác ABC cân tại A.Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD=CE. Kẻ BH vuông góc với AD , kẻ CK vuông góc với AE . Chứng minh rằng :
a) BH=CK
b)tam giác ABH=tam giác ACK
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>BH=CK
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
=>ΔAHB=ΔAKC