Cho A(x)=x^2-10x+25
a)Tính A(0);A(-1)
b)Tìm B(x) biết A(x) +A(x)=6x^2 - 5x+25
c)Tìm C(x) biết A(x) =(x-5) C(x)
d) Tìm nghiệm của B(x)
Tìm x, biết:
a) 7x(x + 1) - 3(x + 1) =0
b) 3 ( x + 8) - x^2 - 8x = 0
c) x^2 - 10x = -25
d) x^2 - 10x = -25
a) \(7x\left(x+1\right)-3\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(7x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\7x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{3}{7}\end{matrix}\right.\)
b) 3(x + 8) - x2 - 8x = 0
=> 3(x + 8) - (x2 + 8x) = 0
=> 3(x + 8) - x(x + 8) = 0
=> (x + 8)(3 - x) = 0 => \(\left[{}\begin{matrix}x+8=0\\3-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-8\\x=3\end{matrix}\right.\)
c) \(x^2-10x=-25\Rightarrow x^2-10x+25=0\Rightarrow\left(x-5\right)^2=0\Rightarrow x=5\)
d) Giống câu c
b) 3(x + 8) - x2 - 8x = 0
=> 3(x + 8) - (x2 + 8x) = 0
=> 3(x + 8) - x(x + 8) = 0
=> (x + 8)(3 - x) = 0 =>
c)
Cho hai biểu thức:
A = \(\dfrac{x+6}{5-x}\) và B = \(\dfrac{x+5}{2x}+\dfrac{x-6}{x-5}+\dfrac{x^2-8x-25}{2x^2-10x}\)
a) Tính giá trị biểu thức A với x thỏa mãn \(x^2+5x=0\)
b) Chứng minh: B = \(\dfrac{x-2}{x-5}\)
c) Tìm giá trị của x để \(B-A=0\)
d) Tìm tất cả giá trị nguyên của x để biểu thức A có giá trị nguyên.
Tìm \(x\)
a, \(x^2-10x+25=0\)
b, \(x^2-8x+16=0\)
c, \(x^2-49=0\)
d, \(4x^2-25=0\)
`a, x^2-10x+25=0`
`<=>x^2 -2.x.5+5^2=0`
`<=>(x-5)^2=0`
`<=>x-5=0`
`<=>x=5`
__
`x^2 -8x+16=0`
`<=> x^2 - 2.x.4+4^2=0`
`<=>(x-4)^2=0`
`<=>x-4=0`
`<=>x=4`
__
`x^2-49=0`
`<=>x^2 - 7^2=0`
`<=>(x-7)(x+7)=0`
`<=>x-7=0` hoặc `x+7=0`
`<=> x=7` hoặc `x=-7`
__
`4x^2-25=0`
`<=> (2x)^2 -5^2=0`
`<=>(2x-5)(2x+5)=0`
`<=>2x-5=0` hoặc `2x+5=0`
`<=> 2x=5` hoặc `2x=-5`
`<=>x=5/2` hoặc `x=-5/2`
a: =>(x-5)^2=0
=>x-5=0
=>x=5
b: =>(x-4)^2=0
=>x-4=0
=>x=4
c: =>(x-7)(x+7)=0
=>x-7=0 hoặc x+7=0
=>x=7 hoặc x=-7
d: =>(2x-5)(2x+5)=0
=>2x-5=0 hoặc 2x+5=0
=>x=5/2 hoặc x=-5/2
Câu 16. Thực hiện phép tính: (3 - x)(3 + x) + (x - 5) ^ 2 . Kết quả bằng: D. 34 - 10x .28 - 10x B. 2x ^ 2 - 10x + 25 A. 34 + 10x
\(\left(3-x\right)\left(3+x\right)+\left(x-5\right)^2\\ =9-x^2+x^2-10x+25\\ =34-10x\)
1) Cho đa thức : A = 2X-3XY2+1. Tính giá trị của A tại x= -2 và y=3.
2)Cho phân thức : B=\(\dfrac{x^2-10x+25}{x^2-25}\)
a. Tìm điều kiện xác định của B
b. Tính giá trị của B tại x= -1.
3)Tính : C= (\(\dfrac{9}{X^3-9X}\) +\(\dfrac{1}{X+3}\)):(\(\dfrac{X-3}{X^2+3X}\) -\(\dfrac{X}{3X+9}\))
4) Cho tam giác ABC vuông tại A (ab<ac). Gọi M ,N theo thứ tự là trung điểm của AB và AC . Trên tia đối của tia NM lấy điểm D soa cho : ND=NM
a. C/M : tứ giác BMCD là hbh
b. Tứ giác AMDC là hình j ? vì soa ?
c. C/M : tam giác BDA cân
MN BIẾT CÂU NÀO THÌ LÀM CÂU ĐÓ CŨNG ĐƯỢC AH!
Bài 3:
\(C=\left(\dfrac{9}{x\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x\left(x+3\right)}-\dfrac{x}{3\left(x+3\right)}\right)\)
\(=\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3x-9-x^2}{3x\left(x+3\right)}\)
\(=\dfrac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}\cdot\dfrac{3x\left(x+3\right)}{-\left(x^2-3x+9\right)}\)
\(=\dfrac{-3}{x-3}\)
Chọn kết quả sai
A. x2-10x+25 = -(x-5)2
B. x2-10x+25 = (5-x)2
C. x2+10x+25 = (x+5)2
D. x2-10x+25 = (x-5)2
Tìm x, biết:
a) x3-0.25x=0
b) x2-10x=-25
Ta có: x3 - 0,25.x = 0
=> x.(x2 - 0,25) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-0,25=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=0,25=0,5^2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=0,5\end{cases}}\)
a) x3 - 0,25x = 0
x.x.x - 0,25x = 0
x. ( x2 - 0,25 ) = 0
TH1 : x = 0
TH2 : x2 - 0,25 = 0
x2 = 0 + 0,25
x2 = 0,25
=> x = 0,5
Vậy x = 0 ; 0,5
a) x3 - 0,25x= 0
=>x=0
b) x2 - 10x=-25
-10x =-25=> x=5
Chỉ cần biết 1 x trong phép toán được, chữ x nào cũng được
tìm x biết:
a) 25x2-2=0
b) 10x-x2-25=0
a) \(25x^2-2=0\)
\(=>\left(5x\right)^2-\left(\sqrt{2}\right)^2=0\)
\(=>\left(5x-\sqrt{2}\right)\left(5x+\sqrt{2}\right)=0\)
\(=>\hept{\begin{cases}5x-\sqrt{2}=0\\5x+\sqrt{2}=0\end{cases}}\)
\(=>\hept{\begin{cases}x=\frac{\sqrt{2}}{5}\\x=-\frac{\sqrt{2}}{5}\end{cases}}\)
b) \(10x-x^2-25=0\)
\(=>-x^2-5x-5x-25=0\)
\(=>-x\left(x+5\right)-5\left(x+5\right)=0\)
\(=>\left(x+5\right)\left(-x-5\right)=0\)
\(=>\hept{\begin{cases}x+5=0\\-x-5=0\end{cases}}\)
\(=>\hept{\begin{cases}x=-5\\x=-5\end{cases}}\)
Tìm x:
a) 18x^3-8x/25=0
b)x^3+2x^2-4x-8=0
c)x^2+10x+21=0