Đường thẳng d : \(\dfrac{x}{a}+\dfrac{y}{b}\) = 1 (a ≠ 0, b ≠ 0) đi qua điểm M(-1;6) tạo với các tia Ox, Oy một tam giác có diện tích bằng 4. Tính S = a + 2b
Mọi người giúp mình với ạ
bài 1 ;cho đường thẳng d;y=ax+3 .Tìm hệ số góc của đường thẳng biết rằng
a, d song song với dường thẳng d' :3x-y-1=0
b, d vuông góc với đường thẳng d':4x+2y+\(3\sqrt{2}\)=0
c,d điểm quaA(-1;_2)
bài 2:Tìm hệ số góc của d biết rằng
a;d đi qua điểm A(\(\sqrt{2}\):1) và B(0;1+\(3\sqrt{2}\))
b;d đi qua C(\(\dfrac{1}{2}+-\dfrac{1}{4}\))và đồng quy hai đường thẳng d1:y=\(\dfrac{2}{5}x+1\)và d2 : y=-x+4
Bài 2:
a: (d): y=ax+b
Theo đề, ta có:
\(\left\{{}\begin{matrix}a\sqrt{2}+b=1\\a\cdot0+b=3\sqrt{2}+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=3\sqrt{2}+1\\a=\dfrac{1-b}{\sqrt{2}}=\dfrac{1-3\sqrt{2}-1}{\sqrt{2}}=-3\end{matrix}\right.\)
b: Tọa độ giao của (d1) và (d2) là:
2/5x+1=-x+4 và y=-x+4
=>7/5x=3và y=-x+4
=>x=15/7 và y=-15/7+4=13/7
Vì (d) đi qua B(15/7;13/7) và C(1/2;-1/4)
nên ta có hệ:
15/7a+b=13/7 và 1/2a+b=-1/4
=>a=59/46; b=-41/46
Viết phương trình đường thẳng ∆ đi qua A(1; 1; 1) vuông góc với đường thẳng d: \(\dfrac{x}{1}=\dfrac{y-1}{1}=\dfrac{z-1}{2}\) sao cho khoảng cách từ B(2; 0; 1) đến ∆ nhỏ nhất.
Vectơ chỉ phương của đường thẳng d là \(\overrightarrow{v_d}\)=(1;1;2), \(\overrightarrow{AB}\)=(1;-1;0).
Vectơ chỉ phương của đường thẳng \(\Delta\) là \(\overrightarrow{v_{\Delta}}=\left[\left[\overrightarrow{AB},\overrightarrow{v_d}\right],\overrightarrow{v_d}\right]=-6\left(1;-1;0\right)\).
Phương trình đường thẳng cần tìm là \(\Delta\): \(\left\{{}\begin{matrix}x=1+t\\y=1-t\\z=1\end{matrix}\right.\).
Cho hàm số y=ax2 (P) (a khác 0) đi qua điểm A(1;2)
a) xác gđịnh a và vẽ đồ thị hàm số vừa tìm dc
b) đường thẳng y= -x + b cắt (P) tại 2 điểm A và B. Xác định b và vẽ tọa độ điểm B
c) cho đường thẳng (d): y= mx - m2 - \(\dfrac{3}{2}\)m -\(\dfrac{3}{4}\). Chứng minh (d) và (P) không cắt nhau với mọi giá trị m
a) Thay x=1 và y=2 vào (P), ta được:
\(a\cdot1^2=2\)
hay a=2
1. đường thẳng đi qua A(0;-5), B(3;0) có phương trình tổng quát.
A.\(\dfrac{x}{3}-\dfrac{y}{5}=1\) B.\(\dfrac{x}{3}+\dfrac{y}{5}=1\) C.\(\dfrac{x}{5}+\dfrac{y}{3}=1\) D.\(\dfrac{-x}{5}+\dfrac{y}{3}=1\)
2.đường thẳng đi qua A(1;3) nhận \(\overrightarrow{n}\) =(-3;5) làm vecto pháp tuyến có phương trình?
3. đường thẳng đi qua A(5;3) nhận \(\overrightarrow{u}\) =(-3;5) làm vecto chỉ phương có phương trình?
Bài 2:
Phương trình (d) cần tìm là -3(x-1)+5(y-3)=0
=>-3x+3+5y-15=0
=>-3x+5y-12=0
=>3x-5y+12=0
Bài 3:
vecto chỉ phương là \(\overrightarrow{v}=\left(-3;5\right)\)
=>VTPT là (5;3)
Phương trình đường thẳng là:
5(x-5)+3(y-3)=0
=>5x-25+3y-9=0
=>5x+3y-34=0
Xác định hàm số y=ax+b.Biết đồ thị hàm số:
a)Đi qua điểm A(1;2)vuông góc với đồ thị hàm số \(y=\dfrac{1}{3}x-1\)
b)Là đường thẳng (d) đi qua 2 điểm B(0;-1) và C(3;0).Vẽ (d) và tính góc \(\alpha\) của (d) với trục hoành
a) Vì đồ thị hàm số y=ax+b vuông góc với đồ thị hàm số \(y=\dfrac{1}{3}x-1\) nên \(a\cdot\dfrac{1}{3}=-1\)
\(\Leftrightarrow a=-1:\dfrac{1}{3}=-1\cdot\dfrac{3}{1}=-3\)
Vậy: Hàm số có dạng y=-3x+b
Vì đồ thị hàm số y=-3x+b đi qua điểm A(1;2) nên
Thay x=1 và y=2 vào hàm số y=-3x+b, ta được:
\(-3\cdot1+b=2\)
\(\Leftrightarrow b-3=2\)
hay b=5
Vậy: Hàm số có dạng y=-3x+5
Bài 1: Trong không gian Oxyz, cho đường thẳng d: \(\dfrac{x-1}{2}=\dfrac{y-1}{2}=\dfrac{z+1}{2}\) và điểm I(1;2;3). Gọi K là điểm đối xứng với I qua d. Lập phương trình mặt cầu (S) tâm K cắt d tại hai điểm A và B, biết đoạn AB=4.
Bài 2: Trong không gian Oxyz cho mặt phẳng (P): x-2y+2z-5=0 và hai điểm A(-3;0;1), B(1;-1;3). Trong các đường thẳng đi qua A và song song với mặt phẳng (P), tìm đường thẳng mà khoảng cách từ B đến đường thẳng đó là nhỏ nhất.
cho các điểm A(0,-5),B(-1,-1),C(2,1),D(\(\dfrac{5}{2}\),\(\dfrac{5}{2}\))
a) Tìm a, b đề đường thẳng
y=ax+b đi qua hai điểm A và B.
b) Chứng minh 4 điểm A, B, C, D thẳng hàng
a.
Gọi d là đường thẳng đi qua A, B. Do A; B đều thuộc d nên tọa độ A; B phải thỏa mãn pt d
\(\Leftrightarrow\left\{{}\begin{matrix}-5=a.0+b\\-1=-1.a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-4\\b=-5\end{matrix}\right.\)
b.
Câu b đề sai, 4 điểm này không hề thẳng hàng (thay tọa độ C, D vào pt d đều không thỏa mãn)
a) Tìm các giá trị của a và b để đường thẳng (d): y=ax+b đi qua hai điểm M(1;5) và N(2;8).
b) Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2x – a + 1 và parabol (P): y = \(\dfrac{1}{2}x^2\).
1.Tìm a để đường thẳng a đi qua điểm A (-1;3)
2.Tìm a để (d) cắt (P) tại hai điểm phân biệt có tọa độ (\(x_1;x_2\)) và (\(x_2;y_2\)) thỏa mãn điều kiện \(x_1x_2\left(y_1+y_2\right)+48=0\)
a: Theo đề, ta có:
\(\left\{{}\begin{matrix}a+b=5\\2a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\)
b:
1: Thay x=-1 và y=3 vào (d), ta được:
\(2\cdot\left(-1\right)-a+1=3\)
=>-a-1=3
=>-a=4
hay a=-4
: Cho đường thẳng: (d): y = (2m – 1)x + m – 2.
1) Tìm m để đường thẳng (d):
a. Đi qua điểm A(1; 6).
b. Song song với đường thẳng 2x + 3y – 5 = 0.
c. Vuông góc với đường thẳng x + 2y + 1 = 0.
2) Tìm điểm cố định mà (d) luôn đi qua với mọi m.
mn giảng giúp mình với, tại mình không hiểu ý ạ:( camon mn nhiều ạ
1.
\(a,\Leftrightarrow2m-1+m-2=6\Leftrightarrow3m=9\Leftrightarrow m=3\\ b,2x+3y-5=0\Leftrightarrow3y=-2x+5\Leftrightarrow y=-\dfrac{2}{3}x+\dfrac{5}{3}\)
Để \(\left(d\right)\text{//}y=-\dfrac{2}{3}x+\dfrac{5}{3}\Leftrightarrow\left\{{}\begin{matrix}2m-1=-\dfrac{2}{3}\\m-2\ne\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{6}\\m\ne\dfrac{11}{3}\end{matrix}\right.\Leftrightarrow m=\dfrac{1}{6}\)
\(c,x+2y+1=0\Leftrightarrow2y=-x-1\Leftrightarrow y=-\dfrac{1}{2}x-\dfrac{1}{2}\\ \left(d\right)\bot y=-\dfrac{1}{2}x-\dfrac{1}{2}\Leftrightarrow\left(-\dfrac{1}{2}\right)\left(2m-1\right)=-1\\ \Leftrightarrow\dfrac{1}{2}\left(2m-1\right)=1\Leftrightarrow m-\dfrac{1}{2}=1\Leftrightarrow m=\dfrac{3}{2}\)
2.
Gọi điểm cố định đó là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(2m-1\right)x_0+m-2\\ \Leftrightarrow2mx_0+m-x_0-2-y_0=0\\ \Leftrightarrow m\left(2x_0+1\right)-\left(x_0+y_0+2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x_0=-1\\x_0+y_0+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-\dfrac{1}{2}\\y_0=-\dfrac{3}{2}\end{matrix}\right.\)