Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
camcon
Xem chi tiết
camcon
Xem chi tiết
Minh Đức
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 5 2023 lúc 22:49

Đặt \(\dfrac{\pi}{3}+mx=t\Rightarrow mx=t-\dfrac{\pi}{3}\)

\(\Rightarrow\dfrac{\pi}{6}-mx=\dfrac{\pi}{6}-\left(t-\dfrac{\pi}{3}\right)=\dfrac{\pi}{2}-t\)

Pt trở thành:

\(cos^2t+4cos\left(\dfrac{\pi}{2}-t\right)=4\)

\(\Leftrightarrow1-sin^2t+4sint=4\)

\(\Leftrightarrow sin^2t-4sint+3=0\Rightarrow\left[{}\begin{matrix}sint=1\\sint=3>1\end{matrix}\right.\)

\(\Rightarrow t=\dfrac{\pi}{2}+k2\pi\)

\(\Rightarrow\dfrac{\pi}{3}+mx=\dfrac{\pi}{2}+k2\pi\)

\(\Leftrightarrow mx=\dfrac{\pi}{6}+k2\pi\)

\(\Rightarrow x=\dfrac{1}{m}\left(\dfrac{\pi}{6}+k2\pi\right)\)

\(0< x< 1\Rightarrow0< \dfrac{1}{m}\left(\dfrac{\pi}{6}+k2\pi\right)< 1\Rightarrow-\dfrac{1}{12}< k< \dfrac{m-\dfrac{\pi}{6}}{2\pi}\) (1)

Pt có 4 nghiệm pb trên đoạn đã cho khi có 4 giá trị k nguyên thỏa mãn (1)

\(\Rightarrow k=\left\{0;1;2;3\right\}\)

\(\Rightarrow3< \dfrac{m-\dfrac{\pi}{6}}{2\pi}\le4\)

\(\Rightarrow\dfrac{37\pi}{6}< m\le\dfrac{49\pi}{6}\)

 

Nguyễn Việt Lâm
7 tháng 5 2023 lúc 22:26

Nghiệm trên \(\left(0;\pi\right)\) hay (0;1) nhỉ?

Thực ra 2 cái này cũng ko khác gì nhau về mặt pp giải toán nhưng mà \(\left(0;\pi\right)\) thì tính toán đẹp hơn \(\left(0;1\right)\) nhiều

Nguyễn Minh Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 11 2023 lúc 19:48

loading...

loading...

loading...

M Thiện Nguyễn
Xem chi tiết
Hồng Phúc
1 tháng 8 2021 lúc 14:38

1.

\(cos2x-3cosx+2=0\)

\(\Leftrightarrow2cos^2x-3cosx+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(x=k2\pi\in\left[\dfrac{\pi}{4};\dfrac{7\pi}{4}\right]\Rightarrow\) không có nghiệm x thuộc đoạn

\(x=\pm\dfrac{\pi}{3}+k2\pi\in\left[\dfrac{\pi}{4};\dfrac{7\pi}{4}\right]\Rightarrow x_1=\dfrac{\pi}{3};x_2=\dfrac{5\pi}{3}\)

\(\Rightarrow P=x_1.x_2=\dfrac{5\pi^2}{9}\)

Hồng Phúc
1 tháng 8 2021 lúc 15:09

2.

\(pt\Leftrightarrow\left(cos3x-m+2\right)\left(2cos3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos3x=\dfrac{1}{2}\left(1\right)\\cos3x=m-2\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x=\pm\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\)

Ta có: \(x=\pm\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow x=\pm\dfrac{\pi}{9}\)

Yêu cầu bài toán thỏa mãn khi \(\left(2\right)\) có nghiệm duy nhất thuộc \(\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}m-2=0\\m-2=1\\m-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=3\\m=1\end{matrix}\right.\)

TH1: \(m=2\)

\(\left(2\right)\Leftrightarrow cos3x=0\Leftrightarrow x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow x=\dfrac{\pi}{6}\left(tm\right)\)

\(\Rightarrow m=2\) thỏa mãn yêu cầu bài toán

TH2: \(m=3\)

\(\left(2\right)\Leftrightarrow cos3x=0\Leftrightarrow x=\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow x=0\left(tm\right)\)

\(\Rightarrow m=3\) thỏa mãn yêu cầu bài toán

TH3: \(m=1\)

\(\left(2\right)\Leftrightarrow cos3x=-1\Leftrightarrow x=\dfrac{\pi}{3}+\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow\left[{}\begin{matrix}x=\pm\dfrac{1}{3}\\x=-1\\x=-\dfrac{5}{3}\end{matrix}\right.\)

\(\Rightarrow m=2\) không thỏa mãn yêu cầu bài toán

Vậy \(m=2;m=3\)

Hồng Phúc
1 tháng 8 2021 lúc 15:23

3.

\(2sin^2\dfrac{x}{4}-3cos\dfrac{x}{4}=0\)

\(\Leftrightarrow2cos^2\dfrac{x}{4}+3cos\dfrac{x}{4}-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos\dfrac{x}{4}=\dfrac{1}{2}\\cos\dfrac{x}{4}=-2\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\pm\dfrac{4\pi}{3}+k8\pi\in\left[0;8\pi\right]\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4\pi}{3}\\x=\dfrac{20\pi}{3}\end{matrix}\right.\)

\(\Rightarrow T=\dfrac{4\pi}{3}+\dfrac{20\pi}{3}=8\pi\)

 

Mai Anh
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 7 2021 lúc 20:40

\(\Leftrightarrow\left(1-sinx\right)\left(cos2x+3msinx+sinx-1\right)=m\left(1-sinx\right)\left(1+cosx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\Rightarrow x=\dfrac{\pi}{2}\\cos2x+3m.sinx+sinx-1=m\left(1+sinx\right)\left(1\right)\end{matrix}\right.\)

Bài toán thỏa mãn khi (1) có 5 nghiệm khác nhau trên khoảng đã cho thỏa mãn \(sinx\ne1\)

Xét (1):

\(\Leftrightarrow1-2sin^2x+3msinx+sinx-1=m+m.sinx\)

\(\Leftrightarrow2sin^2x-sinx-2m.sinx+m=0\)

\(\Leftrightarrow sinx\left(2sinx-1\right)-m\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left(2sinx-1\right)\left(sinx-m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\Rightarrow x=\dfrac{\pi}{6};\dfrac{5\pi}{6}\\sinx=m\left(2\right)\end{matrix}\right.\)

\(\Rightarrow\left(2\right)\) có 3 nghiệm khác nhau trên \(\left(-\dfrac{\pi}{2};2\pi\right)\)

\(\Leftrightarrow-1< m< 0\)

Nguyễn Linh Chi
Xem chi tiết
Nguyễn Minh Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 11 2023 lúc 10:04

loading...  loading...  loading...  

Big City Boy
Xem chi tiết
Nguyễn Đức Trí
9 tháng 9 2023 lúc 7:15

\(4sin\left(x+\dfrac{\pi}{3}\right).cos\left(x-\dfrac{\pi}{6}\right)=m^2+\sqrt[]{3}sin2x-cos2x\)

\(\Leftrightarrow4.\left(-\dfrac{1}{2}\right)\left[sin\left(x+\dfrac{\pi}{3}+x-\dfrac{\pi}{6}\right)+sin\left(x+\dfrac{\pi}{3}-x+\dfrac{\pi}{6}\right)\right]=m^2+2.\left[\dfrac{\sqrt[]{3}}{2}.sin2x-\dfrac{1}{2}.cos2x\right]\)

\(\Leftrightarrow2\left[sin\left(2x+\dfrac{\pi}{6}\right)+sin\left(2x-\dfrac{\pi}{6}\right)\right]=m^2+2\)

\(\Leftrightarrow2.2sin2x.cos\dfrac{\pi}{6}=m^2+2\)

\(\Leftrightarrow2.2sin2x.\dfrac{\sqrt[]{3}}{2}=m^2+2\)

\(\Leftrightarrow2\sqrt[]{3}sin2x.=m^2+2\)

\(\Leftrightarrow sin2x.=\dfrac{m^2+2}{2\sqrt[]{3}}\)

Phương trình có nghiệm khi và chỉ khi

\(\left|\dfrac{m^2+2}{2\sqrt[]{3}}\right|\le1\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m^2+2}{2\sqrt[]{3}}\ge-1\\\dfrac{m^2+2}{2\sqrt[]{3}}\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2\ge-2\left(1+\sqrt[]{3}\right)\left(luôn.đúng\right)\\m^2\le2\left(1-\sqrt[]{3}\right)\end{matrix}\right.\)

\(\Leftrightarrow-\sqrt[]{2\left(1-\sqrt[]{3}\right)}\le m\le\sqrt[]{2\left(1-\sqrt[]{3}\right)}\)