tính tổng các nghiệm thuộc \([0;2\pi]\)thoả mãn phương trình
\(\left(\sin\frac{x}{2}+\cos\frac{x}{2}\right)^2+\sqrt{3}\cos x=3\)
Tính tổng các nghiệm thuộc khoảng 0 ; π của phương trình 4 sin 2 x 2 - 3 cos 2 x = 1 + 2 cos 2 x - 3 π 4
A. 37 π 18
B. π
C. 37 π 17
D. 3 π 2
Phương trình đã cho tương đương với
2 1 - cos x - 3 cos 2 x = 1 + 1 + cos 2 x - 3 π 2 ⇔ - 2 cos x = 3 cos 2 x - sin 2 x ⇔ - cos x = 3 2 cos 2 x - 1 2 sin 2 x ⇔ cos π - x = cos 2 x + π 6 ⇔ x = 5 π 18 + k 2 π 3 x = - 7 π 6 + k 2 π
Do x ∈ 0 ; π nên x ∈ 5 π 18 ; 17 π 18 ; 5 π 6 .
Vậy tổng các nghiệm là 37 π 18
Đáp án A
Tính tổng hợp tất cả các nghiệm thuộc khoảng 0 ; π của phương trình: 2 cos 3 x = sin x + cos x
A. π
B. 3 π
C. 3 π 2
D. π 2
tính tổng các nghiệm của phương trình cos^4x-sin^4x=sin3x+cos4x thuộc đoạn [0;pi]
\(cos^4x-sin^4x=sin3x+cos4x\)
\(\Leftrightarrow\left(cos^2x+sin^2x\right)\left(cos^2x-sin^2x\right)=sin3x+cos4x\)
\(\Leftrightarrow cos2x=sin3x+cos4x\)
\(\Leftrightarrow cos4x-cos2x+sin3x=0\)
\(\Leftrightarrow-2sin3x.sinx+sin3x=0\)
\(\Leftrightarrow sin3x\left(1-2sinx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin3x=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{3}\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=\left\{0;\dfrac{\pi}{3};\dfrac{2\pi}{3};\pi;\dfrac{\pi}{6};\dfrac{5\pi}{6}\right\}\)
\(\Rightarrow\sum x=3\pi\)
Cho phương trình 2 x - π 4 = sin x + 3 π 4 . Tính tổng các nghiệm thuộc khoảng 0 ; π của phương trình trên.
A. 7 π 4
B. π
C. 3 π 2
D. π 4
Gọi S là tổng các nghiệm thuộc khoảng 0 , 2 π của phương trình 3.cos x – 1 = 0. Tính S.
Cho phương trình 2 x - π 4 = sin x + 3 π 4
Tính tổng các nghiệm thuộc khoảng 0 ; π của phương trình trên.
A. 7 π 2
B. π
C. 3 π 2
D. 4 π
Tính tổng tất cả các nghiệm thuộc [0;2022\(\pi\)] của phương trình \(\dfrac{3-cos2x+sin2x-5sinx-cosx}{2cosx+\sqrt{3}}=0\)
ĐKXĐ: \(cosx\ne-\dfrac{\sqrt{3}}{2}\) \(\Rightarrow\left[{}\begin{matrix}x\ne\dfrac{5\pi}{6}+k2\pi\\x\ne\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(pt\Rightarrow3-\left(1-2sin^2x\right)+2sinx.cosx-5sinx-cosx=0\)
\(\Leftrightarrow2sin^2x-5sinx+2+cosx\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(sinx-2\right)+cosx\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(sinx+cosx-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\sinx+cosx=2\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
Loại nghiệm
\(\Rightarrow x=\dfrac{\pi}{6}+k2\pi\)
\(0\le\dfrac{\pi}{6}+k2\pi\le2022\pi\Rightarrow0\le k\le1010\)
\(\Rightarrow\sum x=1011.\dfrac{\pi}{6}+2\pi\left(0+1+2+...+1010\right)=\dfrac{1011\pi}{6}+2\pi.\dfrac{1010.1011}{2}=...\)
tổng tất cả các nghiệm thuộc [0; 2π] của phương trình 2sinx - \(\sqrt{3}\) = 0 là ?
\(2sinx-\sqrt{3}=0\)
\(\Leftrightarrow sinx=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(0\le\dfrac{\pi}{3}+k2\pi\le2\pi\Leftrightarrow-\dfrac{1}{6}\le k\le\dfrac{5}{6}\Leftrightarrow k=0\Rightarrow x=\dfrac{\pi}{3}\)
\(0\le\dfrac{2\pi}{3}+k2\pi\le2\pi\Leftrightarrow-\dfrac{1}{3}\le k\le\dfrac{4}{6}\Leftrightarrow k=0\Rightarrow x=\dfrac{2\pi}{3}\)
\(\Rightarrow x_1+x_2=\pi\)
Tổng các nghiệm thuộc khoảng ( - π 2 ; π 2 ) của phương trình 4 s i n 2 2 x - 1 = 0 bằng
A. π
B. π 3
C. 0
D. π 6
Tổng tất các nghiệm thuộc đoạn 0 ; 10 π của phương trình sin 2 2 x + 3 sin 2 x + 2 = 0
A. 105 2 π
B. 105 4 π
C. 297 4 π
D. 299 4 π