Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 11 2018 lúc 10:18

ĐỖ THỊ THANH HẬU
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 12 2020 lúc 21:38

\(cosx-\left(3sinx-4sin^3x\right)=\sqrt{2}\left(cosx-sinx\right)sin4x\)

\(\Leftrightarrow cosx-sinx+2sinx\left(2sin^2x-1\right)=\sqrt{2}\left(cosx-sinx\right)sin4x\)

\(\Leftrightarrow cosx-sinx-2sinx\left(cosx-sinx\right)\left(cosx+sinx\right)=\sqrt{2}\left(cosx-sinx\right)sin4x\)

\(\Leftrightarrow\left(cosx-sinx\right)\left(1-2sinx\left(sinx+cosx\right)-\sqrt{2}sin4x\right)=0\)

\(\Leftrightarrow\left(cosx-sinx\right)\left(1-2sin^2x-2sinx.cosx-\sqrt{2}sin4x\right)=0\)

\(\Leftrightarrow\left(cosx-sinx\right)\left(cos2x-sin2x-\sqrt{2}sin4x=0\right)\)

\(\Leftrightarrow\left(cosx-sinx\right)\left[sin\left(\dfrac{\pi}{4}-2x\right)-sin4x\right]=0\)

\(\Leftrightarrow...\)

Nguyễn Thị Bích Ngọc
Xem chi tiết
Nguyễn Thị Vân Anh
16 tháng 11 2017 lúc 15:38

tên nghe chói tai quá

lu nguyễn
Xem chi tiết
Hoàng Tử Hà
17 tháng 8 2019 lúc 15:01

1/ ĐKXĐ: \(\cos2x\ne0\)

\(\frac{\cos4x}{\cos2x}=\frac{\sin2x}{\cos2x}\)\(\Leftrightarrow\cos4x-\sin2x=0\)

\(\Leftrightarrow2\cos^22x-1-\sin2x=0\)

\(\Leftrightarrow2-2\sin^22x-1-\sin2x=0\)

\(\Leftrightarrow2\sin^22x+\sin2x-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sin2x=\frac{1}{2}=\sin\frac{\pi}{6}\\\sin2x=-1=\sin\frac{-\pi}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{6}+2k\pi\\2x=\frac{5\pi}{6}+2k\pi\\2x=\frac{-\pi}{2}+2k\pi\left(l\right)\\2x=\frac{3\pi}{2}+2k\pi\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{5\pi}{12}+k\pi\end{matrix}\right.\)

Hoàng Tử Hà
17 tháng 8 2019 lúc 15:31

2/ \(\sin2.4x+\cos4x=1+2\sin2x.\cos\left(2x+4x\right)\)

\(\Leftrightarrow2\sin4x.\cos4x+\cos4x=1+2\sin2x.\left(\cos2x.\cos4x-\sin2x.\sin4x\right)\)

\(\Leftrightarrow2\sin4x.\cos4x+\cos4x=1+2\sin2x.\cos2x.\cos4x-2\sin^22x.\sin4x\)

\(\Leftrightarrow2\sin4x.\cos4x+\cos4x=1+\sin4x.\cos4x-\sin4x+\cos4x.\sin4x\)

Đến đây bn tự giải nốt nhé, lm kiểu bthg thôi bởi vì đã quy về hết sin4x và cos4x r

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 10 2017 lúc 14:19

dia fic
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 6 2019 lúc 6:11

Gia Khanh
Xem chi tiết
Nguyệt Minh
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 10 2021 lúc 20:46

\(cos^4x-sin^4x=sin3x+cos4x\)

\(\Leftrightarrow\left(cos^2x+sin^2x\right)\left(cos^2x-sin^2x\right)=sin3x+cos4x\)

\(\Leftrightarrow cos2x=sin3x+cos4x\)

\(\Leftrightarrow cos4x-cos2x+sin3x=0\)

\(\Leftrightarrow-2sin3x.sinx+sin3x=0\)

\(\Leftrightarrow sin3x\left(1-2sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin3x=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{3}\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow x=\left\{0;\dfrac{\pi}{3};\dfrac{2\pi}{3};\pi;\dfrac{\pi}{6};\dfrac{5\pi}{6}\right\}\)

\(\Rightarrow\sum x=3\pi\)