Trong mặt phẳng tọa độ Oxy, cho ba điểm A(6,3) ; B(-3;6) và C(1; -2). Xác định điểm E trên cạnh BC sao cho BE= 2EC.
A. E - 1 3 ; 2 3
B. E - 1 3 ; - 2 3
C. E 2 3 ; - 1 3
D. E - 2 3 ; 1 3
Trong mặt phẳng tọa độ Oxy, cho ba điểm A(6,3) ,B( -3,6) ,C( 1,-2) .Xác định điểm E trên cạnh BC sao cho BE=2EC
Ý của đề bài là điểm E nằm trên đoạn BC chứ không phải trên đường thẳng BC đúng không nhỉ?
Gọi \(E\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{BE}=\left(x+3;y-6\right)\\\overrightarrow{EC}=\left(1-x;-2-y\right)\end{matrix}\right.\)
\(\overrightarrow{BE}=2\overrightarrow{EC}\Rightarrow\left\{{}\begin{matrix}x+3=2\left(1-x\right)\\y-6=2\left(-2-y\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\frac{1}{3}\\y=\frac{2}{3}\end{matrix}\right.\) \(\Rightarrow E\left(-\frac{1}{3};\frac{2}{3}\right)\)
Trong mặt phẳng hệ trục tạo độ Oxy, cho hình vuông ABCD có đỉnh A(2,1), điểm M(3,5) thuộc đoạn BC, điểm N(6,3) thuộc đoạn CD. Tìm tọa độ đỉnh C. Mình cần gấp mai nộp ạ, mình cảm ơn.
Trong mặt phẳng tọa độ Oxy, cho 3 điểm A(6,3), \(B\left(-\frac{1}{3};\frac{2}{3}\right)\), C(1;-2), D(15,0). Xác định giao điểm I hai đường thẳng BD và AC
Vì \(B,D\in\left(d\right):y=ax+b\Rightarrow\left\{{}\begin{matrix}-\frac{1}{3}a+b=\frac{2}{3}\\15a+b=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-\frac{1}{23}\\b=\frac{15}{23}\end{matrix}\right.\Rightarrow y=-\frac{1}{23}x+\frac{15}{23}\) (1)
Tương tự
\(\left\{{}\begin{matrix}6a+b=3\\a+b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-3\end{matrix}\right.\Rightarrow y=x-3\) (2)
Tìm pthđgđ của (1) và (2) là được
trong mặt phẳng Oxy ,cho ba điểm A<-1,1> B,<-2,3 > C<4,-5>
Tìm tọa độ trung điểm I của doạn BC vs tọa độ trọng tâm G của tam giác ABC
\(\left\{{}\begin{matrix}x_G=\dfrac{-1+\left(-2\right)+4}{3}=\dfrac{1}{3}\\y_G=\dfrac{1+3+\left(-5\right)}{3}=-\dfrac{1}{3}\end{matrix}\right.\)
Trong mặt phẳng tọa độ Oxy, cho ba điểm không thẳng hàng A (-4; 1), B (2;4), C (2; -2)
a) Giải tam giác
b) Tìm tọa độ trực tâm H của tam giác ABC.
a) Ta có:
\(\left\{ \begin{array}{l}\overrightarrow {AB} = (2 - ( - 4);4 - 1) = (6;3)\\\overrightarrow {BC} = (2 - 2; - 2 - 4) = (0; - 6)\\\overrightarrow {AC} = (2 - ( - 4); - 2 - 1) = (6; - 3)\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{6^2} + {3^2}} = 3\sqrt 5 \\BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{0^2} + {{( - 6)}^2}} = 6\\AC = \left| {\overrightarrow {CA} } \right| = \sqrt {{6^2} + {{( - 3)}^2}} = 3\sqrt 5 .\end{array} \right.\)
Áp dụng định lí cosin cho tam giác ABC, ta có:
\(\cos \widehat A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{{\left( {3\sqrt 5 } \right)}^2} + {{\left( {3\sqrt 5 } \right)}^2} - {{\left( 6 \right)}^2}}}{{2.3\sqrt 5 .3\sqrt 5 }} = \frac{3}{5}\)\( \Rightarrow \widehat A \approx 53,{13^o}\)
\(\cos \widehat B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} = \frac{{{{\left( 6 \right)}^2} + {{\left( {3\sqrt 5 } \right)}^2} - {{\left( {3\sqrt 5 } \right)}^2}}}{{2.6.3\sqrt 5 }} = \frac{{\sqrt 5 }}{5}\)\( \Rightarrow \widehat B \approx 63,{435^o}\)
\( \Rightarrow \widehat C \approx 63,{435^o}\)
Vậy tam giác ABC có: \(a = 6;b = 3\sqrt 5 ;c = 3\sqrt 5 \); \(\widehat A \approx 53,{13^o};\widehat B = \widehat C \approx 63,{435^o}.\)
b)
Gọi H có tọa độ (x; y)
\( \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AH} = (x - ( - 4);y - 1) = (x + 4;y - 1)\\\overrightarrow {BH} = (x - 2;y - 4)\end{array} \right.\)
Lại có: H là trực tâm tam giác ABC
\( \Rightarrow AH \bot BC\) và \(BH \bot AC\)
\( \Rightarrow \left( {\overrightarrow {AH} ,\overrightarrow {BC} } \right) = {90^o} \Leftrightarrow \cos \left( {\overrightarrow {AH} ,\overrightarrow {BC} } \right) = 0\) và \(\left( {\overrightarrow {BH} ,\overrightarrow {AC} } \right) = {90^o} \Leftrightarrow \cos \left( {\overrightarrow {BH} ,\overrightarrow {AC} } \right) = 0\)
Do đó \(\overrightarrow {AH} .\overrightarrow {BC} = \overrightarrow 0 \) và \(\overrightarrow {BH} .\overrightarrow {AC} = \overrightarrow 0 \).
Mà: \(\overrightarrow {BC} = (0; - 6)\)
\( \Rightarrow (x + 4).0 + (y - 1).( - 6) = 0 \Leftrightarrow - 6.(y - 1) = 0 \Leftrightarrow y = 1.\)
Và \(\overrightarrow {AC} = (6; - 3)\)
\(\begin{array}{l} \Rightarrow (x - 2).6 + (y - 4).( - 3) = 0\\ \Leftrightarrow 6x - 12 + ( - 3).( - 3) = 0\\ \Leftrightarrow 6x - 3 = 0\\ \Leftrightarrow x = \frac{1}{2}.\end{array}\)
Vậy H có tọa độ \(\left( {\frac{1}{2}}; 1 \right)\)
Trong mặt phẳng tọa độ Oxy, cho hai điểm M (-2; 2) và N (1; 1). Tìm tọa độ điểm P thuộc trục hoành sao cho ba điểm M, N, P thẳng hàng.
A. P( 2; 0 )
B. P( 3; 0)
C. P(- 4; 0)
D. P(4;0)
Ta có P ∈ O x nên P( x; 0) và M P → = x + 2 ; − 2 M N → = 3 ; − 1 .
Do M, N, P thẳng hàng nên 2 vecto M P → ; M N → cùng phương
⇒ x + 2 3 = − 2 − 1 = 2 ⇔ x + 2 = 6 ⇔ x = 4 ⇒ P 4 ; 0 .
Chọn D.
Trong mặt phẳng tọa độ Oxy, cho hai điểm M(-2; 2) và N(1; 1).Tìm tọa độ điểm P thuộc trục hoành sao cho ba điểm M; N; P thẳng hàng.
A. P(0; 4)
B. P(0; -4)
C. P(-4; 0)
D.P( 4; 0)
Ta có P ∈ O x nên P(x; 0) và M P → = x + 2 ; − 2 M N → = 3 ; − 1 .
Do M, N, P thẳng hàng nên x + 2 3 = − 2 − 1 ⇔ x = 4 ⇒ P 4 ; 0 .
Chọn D.
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;-3;7), B(0;4;-3), C(4;2;5). Tìm tọa độ điểm M trên mặt phẳng (Oxy) sao cho M A → + M B → + M C → có giá trị nhỏ nhất
A. M(-2;-1;0)
B. M(-2;-1;0)
C. M(2;-1;0)
D. M(2;1;0)
Trong mặt phẳng tọa độ Oxy, cho ba điểm A(3;-1); B(2; 10); C(-4; 2). Tính tích vô hướng A B → . A C → .
A. A B → . A C → = 40.
B. A B → . A C → = − 40.
C. A B → . A C → = 26.
D. A B → . A C → = - 26.
Ta có A B → = − 1 ; 11 , A C → = − 7 ; 3 .
Suy ra A B → . A C → = − 1 . − 7 + 11.3 = 40.
Chọn A.