Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
26 tháng 9 2023 lúc 23:45

a) 

b) Vì tọa độ vectơ \(\overrightarrow {OM} \) chính là tọa độ của điểm M (với mọi M) nên ta có:

\(\overrightarrow {OD}  = \left( { - 1;4} \right),\overrightarrow {OE}  = \left( {0; - 3} \right),\overrightarrow {OF}  = \left( {5;0} \right)\)

c) 

Từ hình vẽ ta có tọa độ của hai vectơ   và \(\overrightarrow j \)là

 và \(\overrightarrow j  = (0;1)\)

Thanh Thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 1 2023 lúc 0:32

(1); vecto u=2*vecto a-vecto b

=>\(\left\{{}\begin{matrix}x=2\cdot1-0=2\\y=2\cdot\left(-4\right)-2=-10\end{matrix}\right.\)

(2): vecto u=-2*vecto a+vecto b

=>\(\left\{{}\begin{matrix}x=-2\cdot\left(-7\right)+4=18\\y=-2\cdot3+1=-5\end{matrix}\right.\)

(3): vecto a=2*vecto u-5*vecto v

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\cdot\left(-5\right)-5\cdot0=-10\\b=2\cdot4-5\cdot\left(-3\right)=15+8=23\end{matrix}\right.\)

(4): vecto OM=(x;y)

2 vecto OA-5 vecto OB=(-18;37)

=>x=-18; y=37

=>x+y=19

Xuân Huy
Xem chi tiết
Hoa Trần Thị
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 8 2020 lúc 20:51

Do M nằm trên đoạn AB nên \(\overrightarrow{AM}=-3\overrightarrow{BM}\)

Gọi \(M\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(x-2;y-1\right)\\\overrightarrow{BM}=\left(x-6;y-5\right)\end{matrix}\right.\)

\(\overrightarrow{AM}=-3\overrightarrow{BM}\Leftrightarrow\left\{{}\begin{matrix}x-2=-3\left(x-6\right)\\y-1=-3\left(y-5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\x=4\end{matrix}\right.\) \(\Rightarrow M=\left(5;4\right)\)

Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
17 tháng 5 2017 lúc 17:13

\(\overrightarrow{AB}\left(-3;2\right)\); \(\overrightarrow{AC}\left(1;m-2\right)\).
Ba điểm A, B, C thẳng hàng khi và chỉ khi:
\(\dfrac{1}{-3}=\dfrac{m-2}{2}\Leftrightarrow-3\left(m-2\right)=2\)\(\Leftrightarrow m=\dfrac{4}{3}\).

Hoàng Yến Nghiêm
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 6 2023 lúc 9:25

1: (d): x=-2-2t và y=1+2t nên (d) có VTCP là (-2;2)=(-1;1) và đi qua B(-2;1)

=>(d') có VTPT là (-1;1)

Phương trình (d') là;

-1(x-3)+1(y-1)=0

=>-x+3+y-1=0

=>-x+y+2=0

2: (d) có VTCP là (-1;1)

=>VTPT là (1;1)

Phương trình (d) là:

1(x+2)+1(y-1)=0

=>x+y+1=0

Tọa độ H là;

x+y+1=0 và -x+y+2=0

=>x=1/2 và y=-3/2

 

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
26 tháng 9 2023 lúc 23:53

a) Ta có \(\overrightarrow n .\overrightarrow u  = a.b + b.( - a) = 0\)

Tích vô hướng bằng 0 nên hai vectơ \(\overrightarrow n ,\overrightarrow u \)có phương vuông góc với nhau

b) Vectơ \(\overrightarrow {{M_0}M} \) có giá là đường thẳng \(\Delta\)

=> luôn cùng phương với vectơ \(\overrightarrow u \)

=> vectơ \(\overrightarrow {{M_0}M} \) có phương vuông góc với vectơ \(\overrightarrow n \)

Scarlett
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 5 2023 lúc 22:50

AB=căn 5

AB: (x-1)/1=(y-3)/-2

=>2x+y-5=0

M thuộc Δ nên M(m;2-m)

\(d\left(M;AB\right)=\dfrac{\left|m-3\right|}{\sqrt{5}}\)

\(S_{AMB}=\dfrac{1}{2}\cdot MH\cdot AB=4\)

=>|m-3|=8

=>m=11(nhận) hoặc m=-5(loại)

=>M(11;-9)

=>3a+5b=3*11+5*(-9)=-12

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
20 tháng 5 2017 lúc 11:51

Ôn tập cuối năm môn Hình học

Ôn tập cuối năm môn Hình học

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
26 tháng 9 2023 lúc 23:54

\(\Delta \) nhận vectơ \(\overrightarrow n  = \left( {a;b} \right)\) làm vectơ pháp tuyến, suy ra vectơ chỉ phương của \(\Delta \) là \(\overrightarrow u  = (b; - a)\)

và \({M_0}\) thuộc đường thẳng \(\Delta \) nên \(\Delta \) nhận \({\overrightarrow {MM} _0}\)làm vectơ chỉ phương

\({\overrightarrow {MM} _0} = \left( {{x_0} - x;{y_0} - y} \right)\), suy ra \(\left\{ \begin{array}{l}{x_0} - x = b\\{y_0} - y =  - a\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = {x_0} - b\\y = {y_0} + a\end{array} \right.\)

Suy ra \(M\left( {{x_0} - {u_1};{y_0} - {u_2}} \right)\)

Thay tọa độ điểm vào phương trình \(ax + by + c = 0\) ta có:

\(a\left( {{x_0} - b} \right) + b\left( {{y_0} + a} \right) + c = \left( { - ab + ba} \right) + \left( {a{x_0} + b{y_0} + c} \right) = 0\)      (đúng vì \( - a{x_0} - b{y_0} = c\))

Vậy \(M(x;y)\) thỏa mãn phương trình đã cho