x/2 = y/3; y/5 = z/4 và x-y+z = -49
gải bằng hai cách ạ !
mng giúp e
rút gọn B=(x+y)^3 +3(x-y)(x+y)^2+3(x-y)^2(x+y)+(x-y)^3
C=8(x/2 +y)3-6(x+2y)2x+12(x+2y)x2-8x3
D=(x-y)3-(3(x-y)2/2)y+(3(x-y)/4)y^2-y3/8
\(B=\left(x+y\right)^3+3\left(x-y\right)\left(x+y\right)^2+3\left(x-y\right)^2\left(x+y\right)+\left(x-y\right)^3\)
\(=\left(x+y\right)^3+3\cdot\left(x+y\right)^2\cdot\left(x-y\right)+3\cdot\left(x+y\right)\cdot\left(x-y\right)^2+\left(x-y\right)^3\)
\(=\left[\left(x+y\right)+\left(x-y\right)\right]^3\)
\(=\left(x+y+x-y\right)^3\)
\(=\left(2x\right)^3\)
\(=8x^3\)
\(---\)
\(C=8\left(x+2y\right)^3-6\left(x+2y\right)^2x+12\left(x+2y\right)x^2-8x^3\) (sửa đề)
\(=\left[2\left(x+2y\right)\right]^3-3\cdot\left(x+2y\right)^2\cdot2x+3\cdot\left(x+2y\right)\cdot\left(2x\right)^2-\left(2x\right)^3\)
\(=\left[2\left(x+2y\right)-2x\right]^3\)
\(=\left(2x+4y-2x\right)^3\)
\(=\left(4y\right)^3\)
\(=64y^3\)
\(---\)
\(D=\left(x-y\right)^3-3\cdot\dfrac{\left(x-y\right)^2}{2}\cdot y+3\cdot\dfrac{\left(x-y\right)}{4}\cdot y^2-\dfrac{y^3}{8}\)
\(=\left(x-y\right)^3-3\cdot\left(x-y\right)^2\cdot\dfrac{y}{2}+3\cdot\left(x-y\right)\cdot\left(\dfrac{y}{2}\right)^2-\left(\dfrac{y}{2}\right)^3\)
\(=\left[\left(x-y\right)-\dfrac{y}{2}\right]^3\)
\(=\left(x-y-\dfrac{y}{2}\right)^3\)
\(=\left(x-\dfrac{3}{2}y\right)^3\)
#\(Toru\)
Chứng minh đẳng thức
1) (x-y) (x+y) =x^2-y^2
2) (x-y) (x^2+xy+y^2) =x^3-y^3
3) (x+y) (x^2-xy+y^2) =x^3+y^3
thực hiện nhân đa thức với đa thức ở vế trái xog rút gọn là nó = vế pải
1/ Biến đổi vế trái , ta có :
(x-y)(x+y)= x2+xy - xy-y2= x2-y2
=> (x-y) (x+y) =x2-y2
2/ Biến đổi vế trái , ta có :
(x-y) (x2+xy+y2)= x3+x2y+xy2-x2y-xy2-y3
= (x2y-x2y)+(xy2-xy2)+x3-y3=x3-y3
=> (x-y) (x2+xy+y2) =x3-y3
3/ / Biến đổi vế trái , ta có :
(x+y) (x2-xy+y2) =x3-x2y+xy2+x2y-xy2+y3
(-x2y+x2y) + ( xy2-xy2) + x3+y3= x3+y3
Rút gọn biểu thức:
A=2(x+y)3-2(x-y)3
B=(x-y)3-3(y-x)2+3(x-y)-1
C= 6(x-y)(x+y)2+12(x-y)2(x+y)+(x+y)3+8(x-y)3
D= (x-y)3-(x+y)3-3(x+y)2(x-y)-3(x+y)(x-y)2
Rút gọn các phân thức sau: a) x^3+y^3+z^3-3xyz/(x-y)^2+(x-z)^2+(y-z)^2 b) (x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3/(x-y)^3+(y-z)^3+(z-x)3
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
1. Biết x+y=3 ; x.y=1. Tính x^2 =y^2;x^3 =y^3;x^4 =y^4
2. Biết x+y=4 ; x.y=2. Tính x^2 =y^2;x^3 =y^3;x^4 =y^4
Sửa đề: Các dấu bằng ở yêu cầu là dấu cộng.
1. Có: \(x+y=3\)
\(\Leftrightarrow\left(x+y\right)^2=3^2\)
\(\Leftrightarrow x^2+2xy+y^2=9\)
\(\Leftrightarrow x^2+y^2=9-2\cdot1=7\) (do \(xy=1\))
\(------\)
Lại có: \(x+y=3\)
\(\Leftrightarrow\left(x+y\right)^3=3^3\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=27\)
\(\Leftrightarrow x^3+y^3+3\cdot1\cdot3=27\) (do x + y = 3; xy = 1)
\(\Leftrightarrow x^3+y^3=18\)
Ta có: \(x^2+y^2=7\)
\(\Leftrightarrow\left(x^2+y^2\right)^2=7^2\)
\(\Leftrightarrow x^4+y^4+2\cdot\left(xy\right)^2=49\)
\(\Leftrightarrow x^4+y^4=49-2\cdot1=47\) (do xy = 1)
cho các số thực dương x y thỏa mãn x^3+y^3+x^2+y^2=2xy(x+y).Tìm GTNN của K = x ^ 3 + y ^ 3 + 3/(x ^ 2 + y ^ 2) + 2/((x + y) ^ 2)
Ta có:
x^3 + y^3 + x^2 + y^2 = 2xy(x+y)
Đặt S = x + y, P = xy, ta có:
x^3 + y^3 + x^2 + y^2 = (x+y)(x^2 + y^2) = (x+y)^3 - 3xy(x+y) = S^3 - 3PS
Vậy ta có:
S^3 - 3PS + S^2 - 2P = 0
S^3 + S^2 - 3PS - 2P = S(S^2 + S - 3P) - 2P = 0
Do đó, ta có:
S^2 + S - 3P = 0
Sử dụng công thức Viết để tính nghiệm của phương trình bậc hai này, ta được:
S = (-1 + sqrt(1 + 12P))/2 hoặc S = (-1 - sqrt(1 + 12P))/2
Vì x và y là các số thực dương, nên ta chỉ quan tâm đến nghiệm dương của S, tức là:
S = (-1 + sqrt(1 + 12P))/2
Tiếp theo, ta có:
K = x^3 + y^3 + 3/(x^2 + y^2) + 2/((x+y)^2)
= S^3 - 3PS + 3/(S^2 - 2P) + 2/(S^2)
= S^3 - 3PS + 3S^2/(S^2 - 2P) + 2/(S^2)
= S^3 - 3PS + 3S^2/(S^2 - 2P) + 2S^2/(S^2 * (S^2 - 2P))
= S^3 - 3PS + (5S^4 - 6PS^2)/(S^2 * (S^2 - 2P))
= S^3 - 3PS + (5S^4 - 6PS^2)/(S^2 * (S^2 + 1 - 2xy))
= S^3 - 3PS + (5S^4 - 6PS^2)/((S^2 + 1)^2 - 2(S^2-1)P)
= S^3 - 3PS + (5S^4 - 6PS^2)/((S^2 + 1)^2 - 2(S^2-1)(S^3 - 3PS))
= S^3 - 3PS + (5S^4 - 6PS^2)/(-2S^5 + 10S^3 - 2PS^2 + 2P)
= S^3 - 3PS + (5S^4 - 6PS^2)/(2S^5 - 10S^3 + 2PS^2 - 2P)
= S^3 - 3PS + (5S^2 - 6P)/(2S^3 - 10S +
a)[2(x-y)3-7(y-x)2-(y-x)]:(x-y)
b)[3(x-y)5-2(x-y)4+3(x-y)2]:[5(x-y)2 ]
a: =2(x-y)^3/(x-y)-7(x-y)^2/(x-y)+(x-y)/(x-y)
=2(x-y)^2-7(x-y)+1
b: =3(x-y)^5/5(x-y)^2-2(x-y)^4/5(x-y)^2+3(x-y)^2/5(x-y)^2
=3/5(x-y)^3-2/5(x-y)^2+3/5
\(a,\)
\(\left[2\left(x-y\right)^3-7\left(y-x\right)^2-\left(y-x\right)\right]:\left(x-y\right)\)
\(=\left[2\left(x-y\right)^3-7\left(x-y\right)^2+\left(x-y\right)\right]:\left(x-y\right)\)
\(=\left\{\left(x-y\right)\left[2\left(x-y\right)^2-7\left(x-y\right)+1\right]\right\}:\left(x-y\right)\)
\(=2\left(x-y\right)^2-7\left(x-y\right)+1\)
\(b,\)
\(\left[3\left(x-y\right)^5-2\left(x-y\right)^4+3\left(x-y\right)^2\right]:\left[5\left(x-y\right)^2\right]\)
\(=\dfrac{3}{5}\left(x-y\right)^3-\dfrac{2}{5}\left(x-y\right)^2+\dfrac{3}{5}\)
Tính A+B, A-B, B-A
a, A=x\(^2\)y+0,xy\(^3\)-7,5x\(^3\)y\(^2\)+x\(^3\)
B=3xy\(^3\)-x\(^2\)y+5,5x\(^3\)y\(^2\)
b, A=x\(^5\)+xy+0,3y\(^2\)-2
B=x\(^2\)y\(^3\)+5+1,3y\(^2\)
c, A=x\(^2\)y+xy\(^2\)-5x\(^2\)y\(^2\)+x\(^3\)
B=3xy\(^2\)-x\(^2\)y+x\(^2\)y\(^2\)
( x^2+y^2)^2 là ước của (x+y)(x^3+y^3) thì (x^2+y^2)^2= (x+y)(x^3+ y^3)
rút gọn rồi tính giá trị của biểu thức với x=1/2 ; y= -3
A= (x+y)^2 + (x-y)^2 + 2.(x+y).(x-y)
B= 3.(x-y)^2 - 2.(x+y)^2 - (x-y).(x+y)
C=(x+y)^3 - (x-y)^3 - (6x^2y +1)
D=(x+y).(x^2 - xy + y^2) - (x+y)^3
\(A=\left(x+y\right)^2+\left(x-y\right)^2+2\left(x+y\right)\left(x-y\right)\)
\(=x^2+2xy+y^2+x^2-2xy+y^2+2\left(x^2-y^2\right)\)
\(=2x^2+2x^2=4x^2\)
Vs x = 1/2 ; y = 3 ⇒ \(A=\frac{1}{4}.4=1\)
\(B=3x^2-6xy+y^2-2x^2-4xy-2y^2-x^2+y^2=-10xy=\frac{1}{2}.3.10=15\)
\(C=x^3+3x^2y+3xy^2+y^2-x^3+3x^2y-3xy^2+y^3-6x^2y-1=2y^2-1=18-1=17\)\(D=x^3+y^3-x^3-3x^2y-3xy^2-y^3=-3x^2y-3xy^2=\frac{1}{4}.9+\frac{1}{2}.27=\frac{9}{4}+\frac{108}{4}=\frac{117}{4}\)Check lại nhé <33 sợ sai lém