Học tại trường Chưa có thông tin
Đến từ Chưa có thông tin , Chưa có thông tin
Số lượng câu hỏi 0
Số lượng câu trả lời 20
Điểm GP 8
Điểm SP 20

Người theo dõi (1)

Đang theo dõi (0)


Câu trả lời:

Bài 1:

\(a,\)

\(P=2\left(2x-1\right)^2-\left(x+1\right)^2+3\)

\(=2\left(4x^2-4x+1\right)-\left(x^2+2x+1\right)+3\)

\(=8x^2-8x+2-x^2-2x-1+3\)

\(=7x^2-10x+4\)

\(=7\left(x^2-\dfrac{10}{7}x+\dfrac{4}{7}\right)\)

\(=7\left[x^2-2.x.\dfrac{5}{7}+\left(\dfrac{5}{7}\right)^2-\left(\dfrac{5}{7}\right)^2+\dfrac{4}{7}\right]\)

\(=7\left[\left(x-\dfrac{5}{7}\right)^2+\dfrac{3}{49}\right]\)

\(=7\left(x-\dfrac{5}{7}\right)^2+\dfrac{3}{7}\)

Vì \(7\left(x-\dfrac{5}{7}\right)^2\ge0\forall x\)

\(\Rightarrow7\left(x-\dfrac{5}{7}\right)^2+\dfrac{3}{7}\ge\dfrac{3}{7}\forall x\)

\(\Rightarrow P_{min}=\dfrac{3}{7}\Leftrightarrow7\left(x-\dfrac{5}{7}\right)^2=0\Leftrightarrow x=\dfrac{5}{7}\)

\(b,\)

\(Q=3\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)\)

\(=3\left(x^2+4x+4\right)-\left(x^2-4\right)\)

\(=3x^2+12x+12-x^2+4\)

\(=2x^2+12x+16\)

\(=2\left(x^2+6x+8\right)\)

\(=2\left(x^2+6x+9-1\right)\)

\(=2\left[\left(x+3\right)^2-1\right]\)

\(=2\left(x+3\right)^2-2\)

Vì \(2\left(x+3\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x+3\right)^2-2\ge-2\forall x\)

\(\Rightarrow Q_{min}=-2\Leftrightarrow2\left(x+3\right)^2=0\Leftrightarrow x=-3\)

\(c,\)

Tương tự: \(M=\left(x+1\right)^3-\left(x-2\right)^3-5\)

\(=9x^2-9x+4\)

\(=9\left(x^2-x+\dfrac{4}{9}\right)\)

\(=9\left[x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{2}\right)^2+\dfrac{4}{9}\right]\)

\(=9\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{36}\right]\)

\(=9\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\)

Ta có: \(9\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall x\)

\(\Rightarrow M_{min}=\dfrac{7}{4}\Leftrightarrow9\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)

Bài 2:

\(a,\)

\(M=-3x^2-4x+1\)

\(=-3\left(x^2+\dfrac{4}{3}x-\dfrac{1}{3}\right)\)

\(=-3\left[x^2+2.x.\dfrac{2}{3}+\left(\dfrac{2}{3}\right)^2-\left(\dfrac{2}{3}\right)^2-\dfrac{1}{3}\right]\)

\(=-3\left[\left(x+\dfrac{2}{3}\right)^2-\dfrac{7}{9}\right]\)

\(=-3\left(x+\dfrac{2}{3}\right)^2+\dfrac{7}{3}\)

Ta có: \(-3\left(x+\dfrac{2}{3}\right)^2\le\dfrac{7}{3}\forall x\)

\(\Rightarrow M_{max}=\dfrac{7}{3}\Leftrightarrow-3\left(x+\dfrac{2}{3}\right)^2=0\Leftrightarrow x=-\dfrac{2}{3}\)

\(b,\)

\(Q=\left(x+2\right)^2-3\left(x-1\right)^2+3\)

\(=-2x^2+10x+4\)

\(=-2\left(x^2-5x-2\right)\)

\(=-2\left[\left(x-\dfrac{5}{2}\right)^2-\dfrac{33}{4}\right]\)

\(=-2\left(x-\dfrac{5}{2}\right)^2+\dfrac{33}{2}\)

Tương tự, \(Q_{max}=\dfrac{33}{2}\Leftrightarrow x=\dfrac{5}{2}\)

\(c,\)

\(P=\left(x-1\right)\left(x+2\right)-2\left(x+3\right)^2\)

\(=-x^2-11x-20\)

\(=-\left(x^2+11x+20\right)\)

\(=-\left(x+\dfrac{11}{2}\right)^2+\dfrac{41}{4}\)

Tương tự, \(Q_{max}=\dfrac{41}{4}\Leftrightarrow x=-\dfrac{11}{2}\)