Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trang Linh
Xem chi tiết
Trần Thị Loan
22 tháng 4 2015 lúc 5:48

B C A H D K I

Xét tam giác BDI có: IK và DH là 2 đường cao; IK cắt DH tại A => A  là trực tâm của tam giác DIB => BA vuông góc với ID

Mà BA vuông góc với BC (do tam giác ABC vuông tại B)

=> BC // ID => góc BCA = góc IDC (do ở vị trí SLT)              (1)

+) Để tam giác BID đều thì tam giác BID cân tại D và góc BDI = 60o

tam giác BDI cân tại D <=>  DH là đường cao đồng thời là đường phân giác => góc IDC = góc CDB = góc BDI/2

mà góc BDI = 60 độ => góc IDC = 30o                                   (2)

từ (1)(2) => góc BCA = 30o

Vậy để tam giác BDI đều thì tam giác ABC phải thoả mãn góc BCA = 30 độ

Phạm tiến Đạt
Xem chi tiết
Phạm tiến Đạt
5 tháng 11 2021 lúc 11:39

Giải giúp mình với ạ

Nguyễn Lê Phước Thịnh
5 tháng 11 2021 lúc 23:45

b: AH=14,4cm

BH=19,2cm

CH=10,8cm

Phạm tiến Đạt
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 11 2021 lúc 15:56

a, \(AB=\sqrt{BC^2-AC^2}=24\left(cm\right)\left(pytago\right)\)

\(\sin B=\dfrac{AC}{BC}=\dfrac{3}{5}\approx\sin37^0\\ \Rightarrow\widehat{B}\approx37^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx53^0\)

b, Áp dụng HTL: \(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=19,2\left(cm\right)\\CH=\dfrac{AC^2}{BC}=10,8\left(cm\right)\\AH=\sqrt{BH\cdot CH}=14,4\left(cm\right)\end{matrix}\right.\)

Phạm tiến Đạt
Xem chi tiết
Phạm tiến Đạt
5 tháng 11 2021 lúc 16:53

Giúp đi mà mấy bro ơi

Nguyễn Lê Phước Thịnh
5 tháng 11 2021 lúc 22:48

b: AB=24cm

AH=14,4(cm)

BH=19,2(cm)

CH=10,8(cm)

Tăng Thùy Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 7 2021 lúc 21:22

Đề sai rồi bạn

Nguyễn Hoàng Hà
Xem chi tiết
Phạm tiến Đạt
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 11 2021 lúc 23:43

b: BH=19,2cm

AH=14,4cm

Bi Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 20:20

a: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có

góc B chung

=>ΔBAC đồng dạng với ΔBHA

b: ΔBAC đồng dạng vơi ΔBHA

=>BA/BH=BC/BA

=>BA^2=BH*BC

c: ΔABC vuông tại A có AH là đường cao

nên AH*BC=AB*AC

Nguyễn Minh Hằng
Xem chi tiết
Kiều Vũ Linh
25 tháng 4 2023 lúc 8:05

loading...  

a) Xét hai tam giác vuông: ∆ABC và ∆HBA có:

∠B chung

⇒ ∆ABC ∽ ∆HBA (g-g)

b) ∆ABC vuông tại A (gt)

⇒ BC² = AB² + AC² (Pytago)

= 6² + 8²

= 100

⇒ BC = 10

Do ∆ABC ∽ ∆HBA (cmt)

⇒ AC/AH = BC/AB

⇒ AH = AB.AC/BC

= 6.8/10

= 4,8 (cm)

∆ABH vuông tại H

⇒ AB² = AH² + BH² (Pytago)

⇒ BH² = AB² - AH²

= 6² - (4,8)²

= 12,96

⇒ BH = 3,6 (cm)

Chiến Hoàng
25 tháng 4 2023 lúc 8:02

 

a) Ta có:

 

- Góc A của tam giác ABC là góc vuông, nên ta có thể tính được độ dài đoạn thẳng AH bằng cách sử dụng định lí Pythagoras: AH = sqrt(AB^2 + AC^2) = sqrt(6^2 + 8^2) = 10.

 

- Góc A của tam giác ABC cũng là góc giữa đường cao AH và cạnh huyền BC, nên ta có thể tính được tỉ số giữa độ dài đoạn thẳng AH và độ dài cạnh huyền BC: AH/BC = AC/AB = 8/6 = 4/3.

 

- Từ tỉ số này, ta có thể suy ra rằng tam giác ABC đồng dạng với tam giác HBA (vì cả hai tam giác có cùng một góc và tỉ số giữa các cạnh tương ứng bằng nhau).

 

b) Để tính độ dài các cạnh BC, AH, BH, ta có thể sử dụng các công thức sau:

 

- Độ dài cạnh BC: BC = AB/AC * AH = 6/8 * 10 = 15/2 = 7.5.

 

- Độ dài đoạn thẳng BH: BH = sqrt(AH^2 - AB^2) = sqrt(10^2 - 6^2) = 8.

 

- Độ dài đoạn thẳng AH đã được tính ở trên: AH = 10.

 

Vậy độ dài các cạnh BC, AH, BH lần lượt là 7.5cm, 10cm, 8cm.

Đỗ Thị Xuân
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 6 2023 lúc 19:45

Xét ΔAHB vuông tại H và ΔCAB vuông tại A có

góc B chung

=>ΔAHB đồng dạng với ΔCAB

=>BA/BC=BH/BA

=>BA^2=BH*BC