Cho tam giác ABC vuông tại B. Kẻ đường cao BH; vẽ đường phân giác của góc BAC cắt BH tại M, cắt BC tại N. Vẽ BD là đường phân giác của tam giác BHC.
a) C/m AB^2=AC.AH
b) BH^2=AH.AC
c) BM.AB=MH.AC
d) \(\frac{HD}{DC}=\frac{HM}{BM}\)
Cho tam giác ABC vuông tại B; AB<BC, đường cao BH. Trên tia HA lấy điểm D sao cho HD=HC. Từ A kẻ đường thẳng vuông góc với BD, cắt BD tại K, cắt đường thẳng BH tại I. Tìm điều kiện của tam giác ABC để tam giác DBI là tam giác đều.
Xét tam giác BDI có: IK và DH là 2 đường cao; IK cắt DH tại A => A là trực tâm của tam giác DIB => BA vuông góc với ID
Mà BA vuông góc với BC (do tam giác ABC vuông tại B)
=> BC // ID => góc BCA = góc IDC (do ở vị trí SLT) (1)
+) Để tam giác BID đều thì tam giác BID cân tại D và góc BDI = 60o
tam giác BDI cân tại D <=> DH là đường cao đồng thời là đường phân giác => góc IDC = góc CDB = góc BDI/2
mà góc BDI = 60 độ => góc IDC = 30o (2)
từ (1)(2) => góc BCA = 30o
Vậy để tam giác BDI đều thì tam giác ABC phải thoả mãn góc BCA = 30 độ
cho tam giác abc vuông tại a biết ac =18cm bc=30cm a)giải tam giác vuông b)kẻ đường cao AH.Tính CH, BH,AH
b: AH=14,4cm
BH=19,2cm
CH=10,8cm
cho tam giác abc vuông tại a biết ac =18cm bc=30cm a)giải tam giác vuông b)kẻ đường cao AH. Tính CH, BH, AH
a, \(AB=\sqrt{BC^2-AC^2}=24\left(cm\right)\left(pytago\right)\)
\(\sin B=\dfrac{AC}{BC}=\dfrac{3}{5}\approx\sin37^0\\ \Rightarrow\widehat{B}\approx37^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx53^0\)
b, Áp dụng HTL: \(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=19,2\left(cm\right)\\CH=\dfrac{AC^2}{BC}=10,8\left(cm\right)\\AH=\sqrt{BH\cdot CH}=14,4\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC vuông tại A. Biết AC=18cm, BC= 30cm a)giải tam giác vông b)Kẻ đường cao AH.Tính CH, BH, AH
b: AB=24cm
AH=14,4(cm)
BH=19,2(cm)
CH=10,8(cm)
Cho tam giác ABC vuông tại a, đường cao AM, kẻ đường cao MH, MK
Chứng minh:
a) AM2= BH+BK
cho tam giác abc vuông tại a biết ac =18cm bc=30cm giải tam giác vuông a)giải tam giác vuông b) kẻ đường cao AH.Tính C,BH,AH Giải giúp em cần gấp ạ
Cho tam giác ABC vuông tại A. Kẻ đường cao Ah a chứng minh tam giác ABC đồng dạng với tam giác HBA b,AB^2=BH*BC c, AH*BC=AB*AC
a: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có
góc B chung
=>ΔBAC đồng dạng với ΔBHA
b: ΔBAC đồng dạng vơi ΔBHA
=>BA/BH=BC/BA
=>BA^2=BH*BC
c: ΔABC vuông tại A có AH là đường cao
nên AH*BC=AB*AC
Cho tam giác vuông ABC vuông tại A có AB=6cm,AC=8cm. Kẻ đường cao AH. a) Chứng minh tam giác ABC đồng dạng với tam giác HBA b) Tính độ dài các cạnh BC, AH ,BH
a) Xét hai tam giác vuông: ∆ABC và ∆HBA có:
∠B chung
⇒ ∆ABC ∽ ∆HBA (g-g)
b) ∆ABC vuông tại A (gt)
⇒ BC² = AB² + AC² (Pytago)
= 6² + 8²
= 100
⇒ BC = 10
Do ∆ABC ∽ ∆HBA (cmt)
⇒ AC/AH = BC/AB
⇒ AH = AB.AC/BC
= 6.8/10
= 4,8 (cm)
∆ABH vuông tại H
⇒ AB² = AH² + BH² (Pytago)
⇒ BH² = AB² - AH²
= 6² - (4,8)²
= 12,96
⇒ BH = 3,6 (cm)
a) Ta có:
- Góc A của tam giác ABC là góc vuông, nên ta có thể tính được độ dài đoạn thẳng AH bằng cách sử dụng định lí Pythagoras: AH = sqrt(AB^2 + AC^2) = sqrt(6^2 + 8^2) = 10.
- Góc A của tam giác ABC cũng là góc giữa đường cao AH và cạnh huyền BC, nên ta có thể tính được tỉ số giữa độ dài đoạn thẳng AH và độ dài cạnh huyền BC: AH/BC = AC/AB = 8/6 = 4/3.
- Từ tỉ số này, ta có thể suy ra rằng tam giác ABC đồng dạng với tam giác HBA (vì cả hai tam giác có cùng một góc và tỉ số giữa các cạnh tương ứng bằng nhau).
b) Để tính độ dài các cạnh BC, AH, BH, ta có thể sử dụng các công thức sau:
- Độ dài cạnh BC: BC = AB/AC * AH = 6/8 * 10 = 15/2 = 7.5.
- Độ dài đoạn thẳng BH: BH = sqrt(AH^2 - AB^2) = sqrt(10^2 - 6^2) = 8.
- Độ dài đoạn thẳng AH đã được tính ở trên: AH = 10.
Vậy độ dài các cạnh BC, AH, BH lần lượt là 7.5cm, 10cm, 8cm.
Cho tam giác ABC vuông tại A, kẻ đường cao AH kẻ tia Bx vuông góc với BA và Bx cắt AH tại E 1. Cmr tam giác AHB ~ tam giác CAB và AB^2 = BH . BC
Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
góc B chung
=>ΔAHB đồng dạng với ΔCAB
=>BA/BC=BH/BA
=>BA^2=BH*BC