Tứ giác ABCD nội tiếp đường tròn có góc A = 40 độ ; góc B = 60 độ . Khi đó góc C - góc D bằng :
A. 30 độ
B. 20 độ
C. 120 độ
D. 140 độ
C1
a) cho đường tròn tâm O góc nội tiếp BCD=60 độ kẻ đường kính CA tính số đo góc ACB
b) tứ giác ABCD nội tiếp đường tròn có góc DAB=120 độ số đo góc BCD bằng bao nhiêu
C2 cho đường tròn tâm O và điểm M nằm ngoài đường tròn từ M kẻ 2 tiếp tuyến MA ,MB đến đg tròn tâm O với A,B là các tiếp điểm qua M kẻ các tiếp tuyến MNP (ML nhỏ hơn MP) đến đường tròn tâm O .gọi K là trung điểm của NP,OM cắt AB tại H
a) chứng minh rằng MAKOB cùng thuộc một đường tròn
b) chứng minh KM là phân giác của góc AKB
GIÚP EM VỚI MAI THI GIỮA KÌ HUHU
2:
a: góc MAO+góc MBO=180 độ
=>MAOB nội tiếp
b: ΔONP cân tại O
mà OK là trung tuyến
nên OK vuông góc NP
góc OKM=góc OAM=góc OBM=90 độ
=>O,P,A,M,B cùng nằm trên đường tròn đường kính OM
góc AKM=góc AOM
góc BKM=góc BOM
mà góc AOM=góc BOM
nên góc AKM=góc BKM
=>KM là phân giác của góc AKB
Cho tứ giác ABCD nội tiếp trong đường tròn biết A^ = 75 độ ; B= 60 độ . Tình số đo góc C và góc D
Vì tứ giác ABCD nội tiếp (O)
=> góc B + góc C = 180 độ (tổng 2 góc đối bằng 180 độ)
=> 60 + góc C = 180
=> góc C = 180 - 60 = 120 độ
Tiếp tục, ta cũng có góc A + góc D = 180 độ
=> 75 + góc D = 180
=> góc D = 180 - 75 = 105 độ
Note: Bài này đoạn kết còn có cách tính khác, cần inbox mình
Theo mk thi: goc C=105° va goc D=120°
Aj thay dung thj ung ho mk nha!!! Cam on.
Ban Vu Nhu Mai ve hinh nhu the thi se la tu giac ABDC ( saj de bai)
De bai la tu giac ABCD .
Cho hình thang ABCD nội tiếp đường tròn ( O) có đường chéo AC, BD cắt nhau ở E, các cạnh bên AD, BC kéo dài cắt nhau ở F. Chứng minh rằng: a, Tứ giác ABCD là hình thang cân b, FA.FD=FB.FC c, Góc AED = góc AOD d, Tứ giác AOCF nội tiếp
b) Xét ΔFDC có
A\(\in\)FD(gt)
B\(\in\)FC(gt)
AB//CD(gt)
Do đó: \(\dfrac{FA}{AD}=\dfrac{FB}{BC}\)(Định lí Ta lét)
\(\Leftrightarrow\dfrac{FA}{FB}=\dfrac{AD}{BC}=1\)
hay FA=FB
Ta có: FA+AD=FD(A nằm giữa F và D)
FB+BC=FC(B nằm giữa F và C)
mà FA=FB(cmt)
và AD=BC(ABCD là hình thang cân)
nên FD=FC
Ta có: FA=FB(cmt)
FD=FC(cmt)
Do đó: \(FA\cdot FD=FB\cdot FC\)(đpcm)
a) Ta có: ABCD là tứ giác nội tiếp(gt)
nên \(\widehat{A}+\widehat{C}=180^0\)(hai góc đối)(1)
Ta có: ABCD là hình thang(AB//CD)
nên \(\widehat{A}+\widehat{D}=180^0\)(hai góc trong cùng phía)(2)
Từ (1) và (2) suy ra \(\widehat{C}=\widehat{D}\)
Hình thang ABCD(AB//CD) có \(\widehat{C}=\widehat{D}\)(cmt)
nên ABCD là hình thang cân(Dấu hiệu nhận biết hình thang cân)
Cho tứ giác ABCD nội tiếp đường tròn tâm O đường kính AD hai đường chéo AC và BD cắt nhau tại E kẻ EF vuông góc ad a) Chứng minh tứ giác ECDF nội tiếp Xác định tâm I b) Chứng minh CA là phân giác của góc BCF c) Chứng minh tứ giác bcef nội tiếp
a) Xét (O) có
ΔACD nội tiếp đường tròn(A,C,D\(\in\)(O))
AD là đường kính(gt)
Do đó: ΔACD vuông tại C(Định lí)
Suy ra: AC\(\perp\)CD tại C
hay \(EC\perp CD\) tại C
Xét tứ giác ECDF có
\(\widehat{EFD}\) và \(\widehat{ECD}\) là hai góc đối
\(\widehat{EFD}+\widehat{ECD}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ECDF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Tứ giác ABCD nội tiếp đường tròn có A= 400, B= 600. Khi đó C - D bằng bao nhiêu độ?
ABCD nội tiếp \(\Leftrightarrow\left\{{}\begin{matrix}A+C=180^0\\B+D=180^0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}C=140^0\\D=120^0\end{matrix}\right.\)
\(\Rightarrow C-D=20^0\)
Cho tứ giác ABCD nội tiếp đường tròn,BD và AC cắt nhau tại I,góc DBC bằng 30 độ góc BDA bằng 15 độ.Tính góc BIC?
Ta có : \(sd\widebat{AB}=2.sd\widehat{ADB}=2.15^o=30^o\) ( sd cung bằng hai lần góc nội tiếp chắn cung đó )
: \(sd\widebat{CD}=2.\widehat{DBC}=2.30^o=60^o\) ( sd cũng bằng hai lần góc nội tiếp chắn cung đó )
Ta co : \(sd\widebat{AD}\)+ \(sd\widebat{BC}\)+\(sd\widebat{AB}\)+ \(sd\widebat{CD}\) \(=360^o\)
=> \(sd\widebat{AD}+sd\widebat{BC}=360^o-\left(sd\widebat{AB}+sd\widebat{CD}\right)\)
\(=360^o-\left(30^o+60^o\right)=270^o\)
Ta có : \(sd\widehat{BIC}=\frac{1}{2}\left(sd\widebat{AD}+sd\widebat{BC}\right)=\frac{1}{2}.270^o=135^o\)( góc có đỉnh ở bên trong đường trong bằng nửa tổng số đo hai cung bị chắn )
Cho ABCD là tứ giác nội tiếp đường tròn biết góc A = 80°, góc B = 60°. Hãy tính góc C, góc D
Ta có:
\(\widehat{A}+\widehat{C}=180^o\) ( góc đối của tứ giác nội tiếp )
\(\Rightarrow\widehat{C}=180^o-80^o=100^o\)
Ta có:
\(\widehat{B}+\widehat{D}=180^o\) ( góc đối của tứ giác nội tiếp )
\(\Rightarrow\widehat{D}=180^o-60^o=120^o\)
Cho ABCD là tứ giác nội tiếp đường tròn biết góc A=55°, góc D=65°. Hãy tính góc C, góc B?
Ta có:
\(\widehat{A}+\widehat{C}=180^o\) ( góc đối của tứ giác nội tiếp )
\(\Leftrightarrow55^o+\widehat{C}=180^o\)
\(\Rightarrow\widehat{C}=180^o-55^o=125^o\)
Ta có:
\(\widehat{B}+\widehat{D}=180^o\) ( góc đối của tứ giác nội tiếp )
\(\Leftrightarrow\widehat{B}+65^o=180^o\)
\(\Rightarrow\widehat{B}=180^o-65^o=115^o\)
Cho tứ giác ABCD nội tiếp nửa đường tròn đường kính AD. Hai đường chéo AC và BD cắt nhau tại E. Kẻ EF vuông góc AD tại F. Gọi M là trung điểm DE. Chứng minh:
a) Các tứ giác ABEF, DCEF nội tiếp
b) CA là phân giác góc BCF
c) Tứ giác BCMF nội tiếp