Ôn tập góc với đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thái Thúc Huyễn Khả

Cho hình thang ABCD nội tiếp đường tròn ( O) có đường chéo AC, BD cắt nhau ở E, các cạnh bên AD, BC kéo dài cắt nhau ở F. Chứng minh rằng: a, Tứ giác ABCD là hình thang cân b, FA.FD=FB.FC c, Góc AED = góc AOD d, Tứ giác AOCF nội tiếp

Nguyễn Lê Phước Thịnh
16 tháng 4 2021 lúc 22:41

b) Xét ΔFDC có 

A\(\in\)FD(gt)

B\(\in\)FC(gt)

AB//CD(gt)

Do đó: \(\dfrac{FA}{AD}=\dfrac{FB}{BC}\)(Định lí Ta lét)

\(\Leftrightarrow\dfrac{FA}{FB}=\dfrac{AD}{BC}=1\)

hay FA=FB

Ta có: FA+AD=FD(A nằm giữa F và D)

FB+BC=FC(B nằm giữa F và C)

mà FA=FB(cmt)

và AD=BC(ABCD là hình thang cân)

nên FD=FC

Ta có: FA=FB(cmt)

FD=FC(cmt)

Do đó: \(FA\cdot FD=FB\cdot FC\)(đpcm)

Nguyễn Lê Phước Thịnh
16 tháng 4 2021 lúc 22:38

a) Ta có: ABCD là tứ giác nội tiếp(gt)

nên \(\widehat{A}+\widehat{C}=180^0\)(hai góc đối)(1)

Ta có: ABCD là hình thang(AB//CD)

nên \(\widehat{A}+\widehat{D}=180^0\)(hai góc trong cùng phía)(2)

Từ (1) và (2) suy ra \(\widehat{C}=\widehat{D}\)

Hình thang ABCD(AB//CD) có \(\widehat{C}=\widehat{D}\)(cmt)

nên ABCD là hình thang cân(Dấu hiệu nhận biết hình thang cân)


Các câu hỏi tương tự
Wichapas Bible
Xem chi tiết
Hoài An
Xem chi tiết
Sinh tồn Minecraft
Xem chi tiết
Tử Ái
Xem chi tiết
maxi haco
Xem chi tiết
Rendy
Xem chi tiết
Tử Ái
Xem chi tiết
Vương Hoàng Phúc
Xem chi tiết
an trịnh
Xem chi tiết