cho tam giác abc nhọn ab lớn hơn ac nội tiếp đường tròn đường kính ad đường cao cf và bg cắt nhau tại h kẻ oi vuông góc bc a) chứng minh tứ giác cgfb nội tiếp đường tròn b)chứng minh tam giác acd đồng dạng tam giác cfb c)chứng minh tứ giác chbd là hình bình hành và cd.cg=bd.bf d) chứng minh i,h,d thẳng hàng
a: Xét tứ giác CGFB có \(\widehat{CGB}=\widehat{CFB}=90^0\)
nên CGFB là tứ giác nội tiếp
b: Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
=>AC\(\perp\)CD
Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>AB\(\perp\)BD
Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
\(\widehat{ADC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ABC}=\widehat{ADC}\)
Xét ΔACD vuông tại C và ΔCFB vuông tại F có
\(\widehat{ADC}=\widehat{CBF}\)
Do đó: ΔACD~ΔCFB
c: ta có: BH\(\perp\)AC
CD\(\perp\)AC
Do đó: BH//CD
Ta có: CH\(\perp\)AB
BD\(\perp\)BA
Do đó: CH//BD
Ta có: ΔOBC cân tại O
mà OI là đường cao
nên I là trung điểm của BC
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
d: ta có: BHCD là hình bình hành
=>BC cắt HD tại trung điểm của mỗi đường
mà I là trung điểm của BC
nên I là trung điểm của HD
=>H,I,D thẳng hàng