Đặt a = 2 x ; b = 3 x . Đẳng thức nào dưới đây đúng với ∀ x ∈ R
A. 108 x = a b 6
B. 108 x = 2 a b 3
C. 108 x = a 2 b 3
D. 108 x = 3 a 2 b
tìm x nguyên để A đặt giá trị nguyên
A = x + 2 / x^2 - x +3
\(A=\dfrac{x+2}{x^2-x+3}\Leftrightarrow Ax^2-Ax+3A=x+2\\ \Leftrightarrow Ax^2-x\left(A+1\right)+3A-2=0\\ \Leftrightarrow\Delta=\left(A+1\right)^2-4A\left(3A-2\right)\ge0\\ \Leftrightarrow-11A+10A+1\ge0\\ \Leftrightarrow-\dfrac{1}{11}\le A\le1\)
Mà \(A\in Z\Leftrightarrow A\in\left\{0;1\right\}\)
\(+)A=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\\ +)A=1\Leftrightarrow x+2=x^2-x+3\Leftrightarrow x=1\)
Vậy \(x\in\left\{-2;1\right\}\Leftrightarrow A\in Z\)
tìm x nguyên để A đặt giá trị nguyên
A = x + 2 / x^2 - x +3
Sử dụng phương pháp đổi biến số, hãy tính :
a) \(\int\limits^3_0\dfrac{x^2}{\left(1+x\right)^{\dfrac{3}{2}}}dx\) (đặt \(u=x+1\))
b) \(\int\limits^1_0\sqrt{1-x^2}dx\) (đặt \(x=\sin t\))
c) \(\int\limits^1_0\dfrac{e^x\left(1+x\right)}{1+xe^x}dx\) (đặt \(u=1+xe^x\))
d) \(\int\limits^{\dfrac{a}{2}}_0\dfrac{1}{\sqrt{a^2-x^2}}dx\) (\(a>0\)) (đặt \(x=a\sin t\))
Cho biểu thức A = x - 2\(\sqrt{x+2}\)
a) Đặt y = \(\sqrt{x+2}\). Hãy biểu thị A theo y.
b) Tìm giá trị nhỏ nhất của A.
a.
\(y=\sqrt{x+2}\Rightarrow y^2=\left(\sqrt{x+2}\right)^2\)
\(\Rightarrow y^2=x+2\)
\(\Rightarrow x=y^2-2\)
thay vào A ta có:\(A=x-2\sqrt{x+2}\)
\(\Rightarrow A=y^2-2y=y^2-2y-2\)
b.
\(A=x-2\sqrt{x+2}\)
Điều kiện:x+2≥0⇔x>-2
ta có:\(A=x-2\sqrt{x+2}\)
\(=\left(x+2\right)-2\sqrt{x+2}.1+1-3\)
\(=\left(\sqrt{x+12}-1\right)^2-3\)
vì \(\left(\sqrt{x+2}-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(\sqrt{x+2}-1\right)^2-3\ge-3\forall x\)
vậy GTNN của A là-3
a/ y=\(\sqrt{x+2}\)→\(y^2-2=x\)
⇒A=\(y^2-2-2y\)
b/ A=\(y^2-2y-2\)=\(\left(y^2-2y+1\right)-3\)=\(\left(y-1\right)^2-3\)≥ -3
⇒\(A_{min}=-3\)
dấu = xảy ra khi y=1⇒x= -1
đặt nhân tử chung
a x^2 -x^3 -9y +9x
b x^3 +6x^2 +9x
c x^2 -xy +x - y
d x^2 +x -xy -y
b: =x(x^2+6x+9)
=x(x+3)^2
c: =(x^2-xy)+(x-y)
=x(x-y)+(x-y)
=(x-y)(x+1)
d: =(x^2+x)-(xy+y)
=x(x+1)-y(x+1)
=(x+1)(x-y)
b) \(x^3+6x^2+9x\)
\(=x\cdot\left(x^2+6x+9\right)\)
\(=x\cdot\left(x^2+2\cdot3\cdot x+3^2\right)\)
\(=x\cdot\left(x+3\right)^2\)
c) \(x^2-xy+x-y\)
\(=\left(x^2-xy\right)+\left(x-y\right)\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x+1\right)\)
d) \(x^2+x-xy-y\)
\(=\left(x^2+x\right)-\left(xy+y\right)\)
\(=x\left(x+1\right)-y\left(x+1\right)\)
\(=\left(x-y\right)\left(x+1\right)\)
đặt nhân tử chung
a. x^2 -2x -4y^2 -4 y
b. 2x + 2y -x^2 -xy
\(a,x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\(b,2x+2y-x^2-xy\)
\(=\left(2x-x^2\right)+\left(2y-xy\right)\)
\(=x\left(2-x\right)+y\left(2-x\right)\)
\(=\left(x+y\right)\left(2-x\right)\)
A=\(\dfrac{x-1}{x^2}\)B=\(\dfrac{x-1}{2x+1}\)
Đặt C=A:B
\(C=\dfrac{x-1}{x^2}:\dfrac{x-1}{2x+1}\)
\(C=\dfrac{x-1}{x^2}.\dfrac{2x+1}{x-1}\)
\(C=\dfrac{2x+1}{x^2}\)
giải phương trình sau :
\(\left(2x^2-x\right)-9\left(2x^2-x\right)+18=0\) (đặt \(a=2x^2-x\))
Đề là \(\left(2x^2-x\right)^2+...\) hay là \(\left(2x^2-x\right)+...\) vậy bn?
Đặt \(2x^2-x=a\)
\(PT\Leftrightarrow a^2-9a+18=0\\ \Leftrightarrow a^2-3a-6a+18=0\\ \Leftrightarrow\left(a-3\right)\left(a-6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x^2-x-3=0\\2x^2-x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(2x-3\right)\left(x+1\right)=0\\\left(x-2\right)\left(2x+3\right)=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-1\\x=2\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(\left(2x^2-x\right)+9\left(2x^2-x\right)+18=0\)
⇔\(\left(2x^2-x\right)\left(1+9\right)+18=0\)
⇔\(10\left(2x^2-x\right)+18=0\)
⇔\(10\left(2x^2-x\right)=-18\)
⇔\(2x^2-x=-\dfrac{9}{5}\)
⇔\(x\left(2x-1\right)=-\dfrac{9}{5}\)
⇔\(x=-\dfrac{9}{5}\) hay \(2x-1=-\dfrac{9}{5}\)
⇔\(x=-\dfrac{9}{5}\) hay \(2x=-\dfrac{4}{5}\)
⇔\(x=-\dfrac{9}{5}\) hay \(x=-\dfrac{2}{5}\)
Đặt tính rồi tính:
a) 341231 x 2
214325 x 4
b) 102426 x 5
410536 x 3
a) 341231 x 2 = 682 462
214325 x 4 = 857 300
b) 102426 x 5 = 512 130
410536 x 3 = 1 231
Đặt tính
a) (6x^3 - 7x^2 - x + 2) : (2x + 1)
b) (x^4 - x^3 + x^2 + 3x) : (x^2 - 2x + 3)
c) (x^2 - y^2 + 6x + 9) : (x + y + 3) ( đăth nhân tử chung)
d) (x^2 - y^2 - 4x + 4) : (x + y + 2) ( đặt nhân tử chung )
em cần gấp luôn ạ :((