Cho \(\dfrac{a+4}{a-4}=\dfrac{b+5}{b-5}\) (a ≠ 4; b ≠ 5). Chứng minh \(\dfrac{a}{b}=\dfrac{4}{5}\)
Cho a,b,c > 0
Chứng minh rằng: \(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\ge\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}+\dfrac{c^4}{a^2}\)
\(\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+b^2\ge5\sqrt[5]{\dfrac{a^{20}b^2}{b^{12}}}=5.\dfrac{a^4}{b^2}\)
\(\Rightarrow4.\dfrac{a^5}{b^3}+b^2\ge5.\dfrac{a^4}{b^2}\)
Tương tự: \(4.\dfrac{b^5}{c^3}+c^2\ge5\dfrac{b^4}{c^2};4\dfrac{c^5}{a^3}+a^2\ge5.\dfrac{c^4}{a^2}\)
\(\Rightarrow4\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+a^2+b^2+c^2\ge5\left(\dfrac{c^4}{a^2}+\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}\right)\)
Lại có: \(\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+b^2+b^2+b^2\ge5a^2\)
\(\Rightarrow2.\dfrac{a^5}{b^3}+3b^2\ge5a^2\), tương tự: \(2.\dfrac{b^5}{c^3}+3c^2\ge5b^2;2\dfrac{c^5}{a^3}+3a^2\ge5c^2\)
\(\Rightarrow\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\ge a^2+b^2+c^2\)
\(\Rightarrow\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}+4.\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)\ge4.\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+a^2+b^2+c^2\ge5.\left(\dfrac{c^4}{a^2}+\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}\right)\)
\(\Rightarrow dpcm\)
giả sử \(a>b>c>0\) thì ta có :
\(\dfrac{a^4}{b^2}\left(\dfrac{a}{b}-1\right)+\dfrac{b^4}{c^2}\left(\dfrac{b}{c}-1\right)+\dfrac{c^4}{a^2}\left(\dfrac{c}{a}-1\right)\ge\dfrac{2a^2b}{c}+\dfrac{c^5}{a^3}-\dfrac{c^4}{a^2}\)
\(\ge\dfrac{2c^4b}{a}-\dfrac{c^4}{a^2}=\dfrac{c^4}{a}\left(2b-\dfrac{1}{a}\right)>0\)
làm tương tự cho trường hợp \(c>b>a>0\) ; \(b>a>c\) và \(b>c>a\)
\(\Rightarrow\left(đpcm\right)\)
mấy câu cậu câu đăng khác bn làm tương tự nha . nếu bn lm không được thì có j mk lm luôn cho còn h mk bạn rồi :(
Bài 1.
a, Cho\(\dfrac{a}{3}\)=\(\dfrac{b}{4}\)=\(\dfrac{c}{5}\) và a+b+c=24. Tính M = a.b + b.c + ca
b, Cho\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)= \(\dfrac{c}{4}\)=\(\dfrac{d}{5}\) và a+b+c+d = -42. Tính N = a.b +c.d
Bài 2.
a, Biết\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{4}\) và x+y+z= 24. Tính A = 3x + 2y - 6z
b, Biết\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\) và x-y+z = 6\(\sqrt{2}\). Tính B = xy - yz
2:
a: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{24}{9}=\dfrac{8}{3}\)
=>x=16/3; y=8; z=32/3
A=3x+2y-6z
=3*16/3+2*8-6*32/3
=16+16-64
=-32
b: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{x-y+z}{5-6+7}=\dfrac{6\sqrt{2}}{6}=\sqrt{2}\)
=>x=5căn 2; y=6căn 2; y=7căn 2
B=xy-yz
=y(x-z)
=6căn 2(5căn 2-7căn 2)
=-6căn 2*2căn 2
=-24
bài 1 a)áp dụng dãy tỉ số bằng nhau ta có:\(\dfrac{a+b+c}{3+4+5}\)=\(\dfrac{24}{12}\)=2
a=2.3=6 ; b=2.4=8 ;c=2.5=10
M=ab+bc+ac=6.8+8.10+6.10=48+80+60=188
"nhưng bài còn lại làm tương tự"
Cho A = 40 + \(\dfrac{3}{8}+\dfrac{7}{8^2}+\dfrac{5}{8^3}+\dfrac{32}{8^5}\)
B = \(\dfrac{24}{8^2}+40+\dfrac{5}{8^2}+\dfrac{40}{8^4}+\dfrac{5}{8^4}\)
So sánh A và B
cho a,b >0 : \(a+b>\dfrac{5}{4}\)
tìm GTNN của \(\dfrac{4}{a}+\dfrac{1}{4b}\)
Cho 2a-b=\(\dfrac{2}{3}\)(a+b). Tính M=\(\dfrac{a^4+5^4}{b^4+4^4}\)
cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)
chứng minh \(\dfrac{4\cdot a-5\cdot b}{4\cdot a+5\cdot b}=\dfrac{4\cdot c-5\cdot d}{4\cdot c+5\cdot d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\)
Ta có:
\(\dfrac{4.a-5.b}{4.a+5.b}=\dfrac{4.a+5.b-10.b}{4.a+5.b}=1-\dfrac{10.b}{4.a+5.b}=1-\dfrac{10.b}{4.b.k+5b}=1-\dfrac{10}{4.k+5}\) (1)
\(\dfrac{4.c-5.d}{4.c+5.d}=\dfrac{4.c+5.d-10.d}{4.c+5.d}=1-\dfrac{10.d}{4.c+5.d}=1-\dfrac{10.d}{4.d.k+5.d}=1-\dfrac{10}{4.k+5}\) (2)
Từ (1) và (2) suy ra \(\dfrac{4.a-5.b}{4.a+5.b}=\dfrac{4.c-5.d}{4.c+5.d}\left(đpcm\right)\)
Lời giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt\)
Khi đó ta có:
\(\frac{4a-5b}{4a+5b}=\frac{4bt-5b}{4bt+5b}=\frac{b(4t-5)}{b(4t+5)}=\frac{4t-5}{4t+5}\)
\(\frac{4c-5d}{4c+5d}=\frac{4dt-5d}{4dt+5d}=\frac{d(4t-5)}{d(4t+5)}=\frac{4t-5}{4t+5}\)
Do đó: \(\frac{4a-5b}{4a+5b}=\frac{4c-5d}{4c+5d}\) (đpcm)
Cho a, b là những số thực dương. Rút gọn các biểu thức sau:
\(a)\ \dfrac{a^{\dfrac{4}{3}}(a^{\dfrac{-1}{3}}+a^{\dfrac{2}{3}})}{a^{\dfrac{1}{4}}(a^{\dfrac{3}{4}}+a^{\dfrac{-1}{4}})}\)
\(b)\ \dfrac{b^{\dfrac{1}{5}} (\sqrt[5]{b^4}-\sqrt[5]{b^{-1}})}{b^{\dfrac{2}{3}}(\sqrt[3]{b}-\sqrt[3]{b^{-2}})}\)
\(c)\ \dfrac{a^{\dfrac{1}{3}}b^{\dfrac{-1}{3}}-a^{\dfrac{-1}{3}}b^{\dfrac{1}{3}}}
{\sqrt[3]{a^2}-\sqrt[3]{b^2}}\)
\(d)\ \dfrac{a^{\dfrac{1}{3}} \sqrt{b}+b^{\dfrac{1}{3}} \sqrt{a}}
{\sqrt[6]{a}+\sqrt[6]{b}}\)
a) = =
b) = = = . ( Với điều kiện b # 1)
c) \(\dfrac{a^{\dfrac{1}{3}}b^{-\dfrac{1}{3}-}a^{-\dfrac{1}{3}}b^{\dfrac{1}{3}}}{\sqrt[3]{a^2}-\sqrt[3]{b^2}}\)= = = ( với điều kiện a#b).
d) \(\dfrac{a^{\dfrac{1}{3}}\sqrt{b}+b^{\dfrac{1}{3}}\sqrt{a}}{\sqrt[6]{a}+\sqrt[6]{b}}\) = = = =
a, A = \(\dfrac{-7}{8}.\dfrac{5}{9}-\dfrac{4}{9}.\dfrac{7}{8}+5\dfrac{7}{8}\)
b, B = 0,25.\(1\dfrac{3}{5}.\left(\dfrac{5}{4}\right)^2:\left(\dfrac{-4}{7}\right)\)
a) \(A=\dfrac{7}{8}\left(-\dfrac{5}{9}-\dfrac{4}{9}\right)+5\dfrac{7}{8}\)
\(A=\dfrac{7}{8}.\left(-1\right)+5\dfrac{7}{8}=5\dfrac{7}{8}-\dfrac{7}{8}=5\).
\(B=\dfrac{1}{4}.\dfrac{8}{5}.\dfrac{25}{16}.\dfrac{-7}{4}=\dfrac{-35}{32}\)
a) \(A=\dfrac{-7}{8}.\dfrac{5}{9}-\dfrac{4}{9}.\dfrac{7}{8}+5\dfrac{7}{8}\)
\(A=\dfrac{7}{8}.\left(\dfrac{-5}{9}-\dfrac{4}{9}\right)+\dfrac{47}{8}\)
\(A=\dfrac{7}{8}.-1+\dfrac{47}{8}\)
\(A=\dfrac{-7}{8}+\dfrac{47}{8}\)
\(A=5\)
b) \(B=0,25.1\dfrac{3}{5}.\left(\dfrac{5}{4}\right)^2:\left(\dfrac{-4}{7}\right)\)
\(B=\dfrac{1}{4}.\dfrac{8}{5}.\dfrac{25}{16}.\dfrac{-7}{4}\)
\(B=\dfrac{-35}{32}\)
1. Tính :
a, \(A=\dfrac{\dfrac{1}{3}-\dfrac{5}{2}}{\dfrac{3}{4}-\dfrac{1}{2}}.\dfrac{\dfrac{5}{6}+\dfrac{7}{3}}{1-\dfrac{5}{6}}.\dfrac{\dfrac{-2}{5}+1}{\dfrac{2}{5}-1}\).
b, \(B=\dfrac{\dfrac{1}{3}-\dfrac{4}{5}}{\dfrac{1}{3}+\dfrac{4}{5}}.\dfrac{\dfrac{3}{4}-\dfrac{5}{3}}{\dfrac{3}{4}+\dfrac{5}{3}}:\dfrac{\dfrac{4}{5}-1}{1-\dfrac{2}{3}}\).