\(\dfrac{a+4}{a-4}=\dfrac{b+5}{b-5}\)
=>\(\left(a+4\right)\left(b-5\right)=\left(a-4\right)\left(b+5\right)\)
\(\Leftrightarrow ab-5a+4b-20=ab+5a-4b-20\)
\(\Leftrightarrow-10a=-8b\)
=>a/b=4/5
\(\dfrac{a+4}{a-4}=\dfrac{b+5}{b-5}\)
=>\(\left(a+4\right)\left(b-5\right)=\left(a-4\right)\left(b+5\right)\)
\(\Leftrightarrow ab-5a+4b-20=ab+5a-4b-20\)
\(\Leftrightarrow-10a=-8b\)
=>a/b=4/5
Tìm a,b,c biết:
a. \(\dfrac{a}{2}\)=\(\dfrac{b}{3}\); \(\dfrac{b}{5}\)=\(\dfrac{c}{4} \) và a-b+c=-49
b. 3a=2b; 5b=7c và 3a+5b-7c=60
c. \(\dfrac{a}{b}\)=\(\dfrac{8}{5}\), \(\dfrac{b}{3}=\dfrac{c}{5}\)và a+b+c=61
d.\(\dfrac{a}{3}=\dfrac{b}4, \dfrac{b}4=\dfrac{c}5\)và 2a-3b+c=6
e.\(\dfrac{a}2=\dfrac{b}3, \dfrac{b}4=\dfrac{c}5 và a^{2}-b^2=-16\)
1) Tìm x,y,z;biết:
\(\dfrac{x-3}{-4}=\dfrac{y+4}{7}=\dfrac{z-5}{3}\) Và 3x-2y+7z=-48
2)Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)}=\dfrac{a^4+b^4}{c^4+d^4}\)
Các bạn giúp mình với mình đang cần gấp
e, \(\dfrac{x+5}{2}=\dfrac{y-2}{3}vàx-y=10\)
f, \(\dfrac{a+2}{3}=\dfrac{b-7}{5}vàa-b+c=-33\)
h,\(\dfrac{a-1}{2}=\dfrac{b+3}{4}=\dfrac{c-5}{6}và5a-3b-4c=500\)
Zúp mìk zới!
Tìm 3 số a,b,c biết
\(\dfrac{a}{2}=\dfrac{b}{3};\dfrac{b}{4}=\dfrac{c}{5}\)và a + b - 2c = 10
C/m rằng với a,b,c là các số thực ≠ 0 thì\(\dfrac{ab+ac}{4}=\dfrac{bc+ab}{6}=\dfrac{ca+cb}{8}\) thì \(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{15}\)
Câu 1: Cho các số \(0< a_1< a_2< a_3< ...< a_{15}\). Chững minh rằng \(\dfrac{a_1+a_2+a_3+...+a_{15}}{a_5+a_{10}+a_{15}}< 5\)
Câu 2: Tìm x và y biết: \(\dfrac{1+5y}{24}=\dfrac{1+7y}{7x}=\dfrac{1+9y}{2x}\)
Câu 3: Cho \(\dfrac{x}{3}=\dfrac{y}{4}\) và \(\dfrac{y}{5}=\dfrac{z}{6}\). Tính M = \(\dfrac{2x+3y+4z}{3x+4y+5z}\)
Câu 4: Cho \(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\). Chứng minh: \(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\)
Câu 5: Cho 4 số a, b, c, d đều ≠ 0 thoả mãn \(b^2=ac\), \(c^2=bd\), \(b^3+27c^3+8d^3\) ≠ 0. Chứng minh rằng: \(\dfrac{a}{d}=\dfrac{a^3+27b^3+8c^3}{b^3+27c^3+8d^3}\)
Câu 6: Cho \(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\). Tính giá trị của biểu thức A = \(2016x+y^{2017}+x^{2017}\)
Câu 7: Tìm giá trị nhỏ nhất của biểu thức A biết: \(A=\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+zy+zx-2000\right|\)
Câu 8: Tìm 3 số a, b, c biết: \(\dfrac{3a-2b}{4}=\dfrac{2c-4a}{3}=\dfrac{4b-3c}{2}\) và \(a+b+c=18\).
1. Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\). Chứng minh rằng \(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
2. Cho \(\dfrac{a}{2003}=\dfrac{b}{2004}=\dfrac{c}{2005}\). Chứng minh rằng \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
B1: Tìm a, b, c biết :
\(\dfrac{a}{2}=\dfrac{b}{3}\) và \(\dfrac{b}{5}=\dfrac{c}{4}\) và a-b+c=-63
Câu 1: Cho \(\dfrac{a^{2016}+b^{2016}}{c^{2016}+d^{2016}}=\dfrac{a^{2016}-b^{2016}}{c^{2016}-d^{2016}}\). Chứng minh: \(\dfrac{a}{b}=+-\dfrac{c}{d}\)
Câu 2: Cho dãy tỉ số bằng nhau: \(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\). Tính giá trị biểu thức: M = \(\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
Câu 3: Tìm x, y ϵ N biết: \(25-y^2=8\left(x-2009\right)^2\)
Câu 4: Tìm x biết: \(\left|x^2+\left|6x-2\right|\right|=x^2+4\)
Câu 5: Tìm các số nguyên thoả mãn: \(x-y+2xy=7\)
Câu 6: Cho \(a>2,b>2\). Chứng minh: \(ab>a+b\)