Tìm a,b a \(\ne\)0; a,b\(\inℕ\)  (ab)2=(b-1)aab
tìm các chữ số a,b,c biết\(a\ne b\ne c\)và 0 < a,b,c sao cho \(\frac{1}{a+b+c}=0,abc\)
Tìm x biết: \(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}+\frac{4x}{a+b+c}=1\)
(a, b, c \(\ne\) 0, a+b+c\(\ne\)0)
\(\Rightarrow\)\(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}=1-\frac{4x}{a+b+c}\)
\(\Leftrightarrow\)\(\frac{a+b+c-x}{c}+\frac{b+c+a-x}{a}+\frac{c+a+b-x}{b}=4-\frac{4x}{a+b+c}\)(Vế trái cộng mỗi phân số với 1 thì vế phải +3)
\(\Leftrightarrow\)\(\left(a+b+c-x\right)\left(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}\right)=4\left(a+b+c-x\right).\frac{1}{a+b+c}\)
+ Xét \(a+b+c-x=0\Rightarrow x=a+b+c\)
+ Xét \(a+b+c-x\)khác 0 \(\Rightarrow\)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=4\left(\frac{1}{a+b+c}\right)\)
Ta có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}>4\left(\frac{1}{a+b+c}\right)\)(bất đẳng thức COSY đó bạn)
như vậy là phương trình vô nghiệm
Sai rồi nha bạn Nguyễn Thuỳ Trang.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{a+b+c}\) vẫn được mà.
Đề có cho \(a,b,c\) dương đầu mà dùng Cauchy như đúng rồi vậy! Cẩn thận một chút.
Cho tỉ lệ thức\(\frac{a}{b}=\frac{c}{d}\)với a≠0,b≠0,c≠0,d≠0,a≠b,c≠d
chứng minh \(\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\)
\(\frac{a}{b}=\frac{c}{d}\\ \Rightarrow\frac{a}{c}=\frac{b}{d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\left(\frac{a-b}{c-d}\right)^{2013}\left(1\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\)
a)Tìm số nghịch đảo của phân số \(\frac{a}{b}\) (a,b\(\in\) Z; a\(\ne\)0; b\(\ne\)0
b) Tìm x, biết: \(\frac{-17}{7}.x=\frac{7}{-17}\)
a) Số nghịch đảo của \(\frac{a}{b}\) là \(\frac{b}{a}\)
b) \(-\frac{17}{7}.x=\frac{7}{-17}\Leftrightarrow x=\frac{7}{-17}:-\frac{17}{7}=\frac{49}{289}\)
tìm các chữ số a,b,c biết \(a\ne b\ne c\) và 0 < a,b,c sao cho \(\frac{1}{a+b+c}\)=0,abc
=> 0,abc x (a+b+c) = 1
1000 x 0.abc x (a+b+c) = 1000
abc x (a + b + c) = 1000
Vì abc là số có 3 chữ số nên abc nhỏ nhất bằng 100
=> a+ b + c lớn nhất bằng : 1000 : 100 = 10.
Mà 1000 chia hết cho (a+ b+ c) nên a + b + c = 1; 2;4;5;8 hoặc 10
+) nếu a+ b + c = 1 thì abc = 1000 (Loại)
+) Nếu a+ b + c = 2 thì abc = 1000 : 2 = 500 ( Loại vì: 5 + 0 + 0 = 5 > 2)
+) Nếu a+ b +c = 4 thì abc = 1000 : 4 = 250 (Loại vì 2 + 5 + 0 = 7 > 4)
+) Nếu a + b + c = 5 thì abc = 1000 : 5 = 200 (Loại )
+) Nếu a + b + c = 8 thì abc = 1000 : 8 = 125 (Thỏa mãn)
Vậy a = 1; b = 2; c = 5
Cho \(\frac{a+b}{b+c}\) = \(\frac{c+d}{d+a}\) ( Với c+d ≠ 0 , b+c ≠ 0 , d+a ≠ 0 )
Chứng minh a = c hoặc a + b + c + d = 0
Ta có: \(\frac{a+b}{b+c}=\frac{c+d}{d+a}.\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{b+c}{d+a}\)
\(\Rightarrow\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1.\)
\(\Rightarrow\frac{a+b}{c+d}+\frac{c+d}{c+d}=\frac{b+c}{d+a}+\frac{d+a}{d+a}.\)
\(\Rightarrow\frac{a+b+c+d}{c+d}=\frac{b+c+d+a}{d+a}\)
Nếu \(a+b+c+d\ne0.\)
\(\Rightarrow c+d=d+a\)
\(\Rightarrow c=a\left(đpcm1\right).\)
Nếu \(a+b+c+d=0\) thì hợp với đề.
\(\Rightarrow a+b+c+d=0\left(đpcm2\right).\)
Chúc bạn học tốt!
Cho hai mặt phẳng (P): ax+2y-az+1=0 và (Q): 3x-(b+1)y+2z-b=0. Tìm hệ thứcliên hệ giữa a và b để (P) và (Q) vuông góc với nhau.
A. a-2b-2=0
B. 2a-b=0
C. \(\dfrac{a}{3}=\dfrac{2}{-\left(b+1\right)}=\dfrac{-a}{2}\ne\dfrac{1}{-b}\)
D. \(\dfrac{a}{3}\ne\dfrac{2}{-\left(b+1\right)}\ne\dfrac{-a}{2}\ne\dfrac{1}{-b}\)
Phương trình \(ax + b = 0\) là phương trình bậc nhất một ẩn nếu
A. \(a = 0\). B. \(b \ne 0\).
C. \(b = 0\). D. \(a \ne 0\).
Đáp án đúng là D
Phương trình \(ax + b = 0\) muốn là phương trình bậc nhất thì \(a \ne 0\).
Cho đường thẳng (d): Ax + By = C(A2 + B2 ≠ 0). Tính khoảng cách từ gốc tọa độ O (0;0) đến đường thẳng (d) trong 3 trường hợp:
1) A≠0, B=0
2) A = 0, B≠0
3) AB ≠ 0
Tìm giá trị của m sao cho \(\overrightarrow{a}=m\overrightarrow{b}\) trong các trường hợp sau :
a) \(\overrightarrow{a}=\overrightarrow{b}\ne\overrightarrow{0}\)
b) \(\overrightarrow{a}=-\overrightarrow{b};\overrightarrow{a}\ne\overrightarrow{0}\)
c) \(\overrightarrow{a},\overrightarrow{b}\) cùng hướng và \(\left|\overrightarrow{a}\right|=20;\left|\overrightarrow{b}\right|=5\)
d) \(\overrightarrow{a},\overrightarrow{b}\) ngược hướng và \(\left|\overrightarrow{a}\right|=5;\left|\overrightarrow{b}\right|=15\)
e) \(\overrightarrow{a}=\overrightarrow{0};\overrightarrow{b}\ne\overrightarrow{0}\)
g) \(\overrightarrow{a}\ne\overrightarrow{0};\overrightarrow{b}=\overrightarrow{0}\)
h) \(\overrightarrow{a}=\overrightarrow{0};\overrightarrow{b}=\overrightarrow{0}\)
a) Theo giả thiết \(\overrightarrow{a}=\overrightarrow{b}\ne\overrightarrow{0}\) nên giả sử \(\overrightarrow{a}=m\overrightarrow{b}\) suy ra:
\(\overrightarrow{a}=m\overrightarrow{a}\Leftrightarrow\left(1-m\right)\overrightarrow{a}=\overrightarrow{0}\).
\(\Leftrightarrow1-m=0\) (vì \(\overrightarrow{a}\ne\overrightarrow{0}\) ).
\(\Leftrightarrow m=1\).
b) Nếu \(\overrightarrow{a}=-\overrightarrow{b};\overrightarrow{a}\ne\overrightarrow{0}\).
Giả sử \(\overrightarrow{a}=m\overrightarrow{b}\Leftrightarrow\overrightarrow{a}=-m\overrightarrow{a}\)\(\Leftrightarrow\overrightarrow{a}\left(1+m\right)=\overrightarrow{0}\)
\(\Leftrightarrow1+m=0\)\(\Leftrightarrow m=-1\).
c) Do \(\overrightarrow{a}\) , \(\overrightarrow{b}\) cùng hướng nên: \(m>0\).
Mặt khác: \(\overrightarrow{a}=m\overrightarrow{b}\Leftrightarrow\left|\overrightarrow{a}\right|=\left|m\right|.\left|\overrightarrow{b}\right|\)
\(\Leftrightarrow20=5.\left|m\right|\)\(\Leftrightarrow\left|m\right|=4\)
\(\Leftrightarrow m=\pm4\).
Do m > 0 nên m = 4.
d) Do \(\overrightarrow{a},\overrightarrow{b}\) ngược hướng nên m < 0.
\(\left|\overrightarrow{a}\right|=\left|m\right|.\left|\overrightarrow{b}\right|\)\(\Leftrightarrow15=\left|m\right|.3\)\(\Leftrightarrow\left|m\right|=5\)\(\Leftrightarrow m=\pm5\).
Do m < 0 nên m = -5.
e) \(\overrightarrow{a}=\overrightarrow{0};\overrightarrow{b}\ne\overrightarrow{0}\) nên\(\overrightarrow{0}=m.\overrightarrow{b}\). Suy ra m = 0.
g) \(\overrightarrow{a}\ne\overrightarrow{0};\overrightarrow{b}=\overrightarrow{0}\) nên \(\overrightarrow{a}=m.\overrightarrow{0}=\overrightarrow{0}\). Suy ra không tồn tại giá trị m thỏa mãn.
h) \(\overrightarrow{a}=\overrightarrow{0};\overrightarrow{b}=\overrightarrow{0}\) nên \(\overrightarrow{0}=m.\overrightarrow{0}\). Suy ra mọi \(m\in R\) đều thỏa mãn.