Cho a/2=b/3; a*b=54, giá trị nhỏ nhất của a+b là bao nhiêu
1) Cho a + b= -2, a^2 + b^2 = 52. Tính a^3 +b^3
2) Cho a + b = 7, a^2 + b^2 = 25. TÍnh a^3 + b^3, a^4 + b^4
3) Cho a + b = 5, a^2 + b^2 = 53. Tính a^3 + b^3, a^4 + b^4
ta có: a + b=-2 ; a^2 + b^2 = 52
=> (a+b)^2 = 4 => a^2 + 2ab + b^2 = 4
=> 52 + 2ab= 4
=> 48= -2ab
=> ab= -24
a^3 + b^3 = (a+b)( a^2-ab+ b^2)
=> a^3 + b^3 = -2.(52+24)= -2. 76= -152
Bài 1: Cho a,b,c thỏa mãn (a+b-c)/c=(b+c-a)/a=(c+a-b)/b
tính P=(1+b/a)*(1+c/b)*(1+a/c)
Bài 2: Cho a+b+c=0
tính B=((a^2+b^2-c^2)*(b^2+c^2-a^2)*(c^2+a^2-b^2))/(10*a^2*b^2*c^2)
Bài 3: cho a^3*b^3+b^3*c^3+c^3*a^3=3*a^3*b^3*c^3
tính M(1+a/b)*(1+b/c)*(1+c/a)
Bài 4: cho 3 số a,b,c TM a*b*c=2016
tính P=2016*a/(a*b+2016*a+2016) + b/(b*c+b+2016) + c/(a*c+c+1)
Bài 5: cho a+b+c=0
tính Q=1/(a^2+b^2-c^2) + 1/(b^2+c^2-a^2) + 1/(a^2+c^2-b^2)
a)cho A=4+4^2+4^3+...+4^23+4^24.CMR A chia het cho 20 , 21 , 420
b)cho A=2+2^2+2^3+2^4+...+2^60 CMR B A chia het cho 3
c)cho B = 3+ 3^2+3^3+...+3^20.CMR B ;là bôội của 12
1)Cho a+b=1. Tính M= 2(a^3+b^3)-2(a^2+b^2)
2) cho a+b=1. Tính N= a^3+b^3+3ab(a^2+b^2)+6a^2b^2(a+b)
Ta có :
M = 2( a3 + b3 ) - 3( a2 + b2 )
= 2( a + b ) ( a2 - ab + b2 ) - 3( a2 + b2 )
= 2( a2 - ab + b2 ) - 3 ( a2 + b2 )
= 2a2 - 2ab + 2b2 - 3a2 - 3b2
= -a2 - 2ab - b2
= - ( a + b )2
= -1
M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)
= (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)
= (a + b)((a + b)2 - 3ab) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)
= 1 - 3ab + 3ab(1 - 2ab) + 6a2b2
= 1 - 3ab + 3ab - 6a2b2 + 6a2b2 = 1
1. Cho A = (1; +∞); B = [−2; 6] . Tập hợp A ∩ B là
A. [−2; +∞)
B. (1; +∞)
C. [−2; 6]
D. (1; 6]
2. Cho A=[–4;7] và B=(-\(\infty\);–2)∪ (3;+\(\infty\)). Khi đó A∩B là:
A.[– 4; – 2) ∪ (3; 7]
B.[– 4; – 2) ∪ (3; 7)
C.(– ∞; 2] ∪ (3; +∞)
D.(−∞; −2) ∪ [3; +∞)
3. Cho ba tập hợp A = (-∞; 3), B = [−1; 8], C = (1 ; +∞). Tập (A ∩ B)\ (A ∩ C) là tập
A. [−1; 1]
B. (1 ; 3)
C. (−1; 3)
D. (−1; 1)
1. Cho a,b,c là 3 cạnh tam giác sao cho a+b+c=2
CM:a^2+b^2+c^2+2abc < 2
2. Cho a,b,c là 3 cạnh tam giác
CM: B=a^4+b^4+c^4-2a^2.b^2-2b^2.c^2-2c^2.a^2 < 0
3. Cho a,b,c dương biết a,b,c khác nhau
CM: A=a^3+b^3+c^3-3abc > 0
Quy định của hoc24 là chỉ dc dăng 1 bài trong 1 câu hỏi bạn nhé
bài 1 :
Tam giác ABC có độ dài 3 cạnh là a,b,c và có chu vi là 2
--> a + b + c = 2
Trong 1 tam giác thì ta có:
a < b + c
--> a + a < a + b + c
--> 2a < 2
--> a < 1
Tương tự ta có : b < 1, c < 1
Suy ra: (1 - a)(1 - b)(1 - c) > 0
⇔ (1 – b – a + ab)(1 – c) > 0
⇔ 1 – c – b + bc – a + ac + ab – abc > 0
⇔ 1 – (a + b + c) + ab + bc + ca > abc
Nên abc < -1 + ab + bc + ca
⇔ 2abc < -2 + 2ab + 2bc + 2ca
⇔ a² + b² + c² + 2abc < a² + b² + c² – 2 + 2ab + 2bc + 2ca
⇔ a² + b² + c² + 2abc < (a + b + c)² - 2
⇔ a² + b² + c² + 2abc < 2² - 2 , do a + b = c = 2
⇔ a² + b² + c² + 2abc < 2
--> đpcm
1. cho a,b,c thỏa mãn \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{a^2+ac+c^2}=1006\)
tính giá trị của m= \(\dfrac{a^3+b^3}{a^2+ab+b^2}+\dfrac{b^3+c^3}{b^2+bc+c^2}+\dfrac{c^3+a^3}{a^2+ac+c^2}\)
2. cho a+c+b=\(\dfrac{1}{2}\) , \(a^2+b^2+c^2+ab+bc+ac=\dfrac{1}{6}\).
tính p= \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\)
3. cho a,b,c khác 0, và \(\dfrac{x^4+y^4+z^4}{a^4+b^4+c^4}=\dfrac{x^4}{a^4}+\dfrac{y^4}{b^4}+\dfrac{z^4}{c^4}\)tính \(x^2+y^9+z^{1945}+2017\)
Bài 1: Cho A = 2 + 22 + 23 + ..... + 260. Chứng minh rằng:
a, A chia hết cho 3
b, A chia hết cho 7
c, A chia hết cho 15
Bài 2: Cho B= 1 + 3 + 32 + 33 + ... + 311. Chứng minh rằng:
a, B chia hết cho 13
b, B chia hết cho 40
1/a)Ta có: A = 2 + 22 + 23 + ... + 260
= (2 + 22) + (23+24) + ... + (259 + 560)
= (2.1 + 2.2) + (23.1 + 23.2) + ... + (259.1 + 259.2)
= 2.(1 + 2) + 23.(1 + 2) + ... + 259.(1 + 2)
= 2.3 + 23.3 + ... + 259.3
= 3.(2 + 23 + ... + 259) \(⋮\) 3
Vậy A \(⋮\) 3.
b) Tương tự: gộp 3.
c) gộp 4
Bài 1:
a, A = 2 + 22 + 23 + ... + 260
= ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 259 + 260 )
= 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 259 . ( 1 + 2 )
= 2 . 3 + 23 . 3 + ... + 259 . 3
= 3 . ( 2 + 23 + ... + 259 )
Vậy A chia hết cho 3
b,A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 258 + 259 + 260 )
= 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 258 . ( 1 + 2 + 22)
= 2. 7 + 24 . 7 + ... + 258 . 7
= 7 . ( 2 + 24 + ... + 258 )
Vậy A chia hết cho 7
c, Ta có:
A= ( 2 + 22 + 23 + 24 ) + ............ + ( 257 + 258 + 259 + 260 )
= 2 . ( 1 + 2 + 22 + 23 ) + ............ + 257 . ( 1 + 2 + 22 + 23 )
= 2. 15 + ............ + 257 . 15
= 15 . ( 2 + ...............+ 257 )
Vậy A chia hết cho 15
Bài 1:
a, A có 60 số hạng, chia A thành 30 cặp như sau:
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(A=2.3+2^3.3+...+2^{59}.3\)
\(A=3.\left(2+2^3+...+2^{59}\right)⋮3\left(đpcm\right)\)
b, Chia A thành 20 nhóm, mỗi nhóm có 3 số hạng như sau:
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^3\right)+...+2^{58}\left(1+2+2^2\right)\)
\(A=2.7+2^4.7+...+2^{58}.7\)
\(A=7.\left(2+2^4+...+2^{58}\right)⋮7\left(đpcm\right)\)
c, Chia A thành 15 nhóm, mỗi nhóm 4 số hạng như sau:
\(A=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(A=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(A=2.15+2^5.15+...+2^{57}.15\)
\(A=15\left(2+2^5+...+2^{57}\right)⋮15\left(đpcm\right)\)
Bài 1 Cho a+b=-3, ab=-2. Hãy tính giá trị của
a^2+b^2, a^4+b^4, a^3+b^3, a^5+a^5, a^7+a^7
Bài 2 Cho a+b=5, ab=-2(a<b). Hãy tính a^2+b^2, \(\dfrac{1}{a^3}+\dfrac{1}{b^3}\),a-b, a^3-b^3
Bạn nào bik dùng HĐT phụ thì giúp mình nhé
Bài 2:
\(a^2+b^2=\left(a+b\right)^2-2ab=5^2-2\cdot\left(-2\right)=9\)
\(\dfrac{1}{a^3}+\dfrac{1}{b^3}=\dfrac{a^3+b^3}{a^3b^3}=\dfrac{\left(a+b\right)^3-3ab\left(a+b\right)}{\left(ab\right)^3}\)
\(=\dfrac{5^3-3\cdot5\cdot\left(-2\right)}{\left(-2\right)^3}=\dfrac{125+30}{8}=\dfrac{155}{8}\)
\(a-b=-\sqrt{\left(a+b\right)^2-4ab}=-\sqrt{5^2-4\cdot\left(-2\right)}=-\sqrt{33}\)
Cho a-b = 1 và ab = 6 Tính a3-b3
Cho a+ b = 1 và ab = -1 Tính a3-b3
Cho a+b = 1 và ab = -2 Tính 2(a3+b3)-3(a2+b2)
Cho x+y = 1 Tinh GTBT x3+y3+3xy
Cho x-y = 1 Tính GTBT x3-y3-3xy
Cho x-y = 4 và xy = 21 Tính x+y
Cho a-b=1 và a2+b2 = 15 Tính a3-b3
Cho a+b = 3 và a2+b2 = 5 Tính a3+b3
Các bạn giúp mình nhanh nhanh sáng mai kiểm tra rồi !!!!!!!!
a) \(a^3-b^3\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)\) (*)
Ta có:
\(a-b=1\)
\(\Rightarrow\left(a-b\right)^2=1\)
\(\Rightarrow a^2-2ab+b^2=1\)
\(\Rightarrow a^2+b^2=1+2ab\left(1\right)\)
Ta lại có: \(ab=6\left(2\right)\)
Thay (1) và (2) vào (*) ta được
\(=1.\left(1+2ab+ab\right)\)
\(=1+3ab\)
\(=1+3.6\)
\(=19\)
b) \(a^3-b^3\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)\)(*)
Ta có:
\(a+b=1\)
\(\Rightarrow\left(a+b\right)^2=1\)
\(\Rightarrow a^2+2ab+b^2=1\)
\(\Rightarrow a^2+b^2=1-2ab\left(1\right)\)
Ta lại có: \(ab=-1\left(2\right)\)
Thay (1) và (2) vào (*) ta được
\(=1\left(1-2ab+ab\right)\)
\(=1-ab\)
\(=1-\left(-1\right)\)
\(=2\)
c) \(2\left(a^3+b^3\right)-3\left(a^2+b^2\right)\)
\(=2\left(a+b\right)\left(a^2-ab+b^2\right)-3\left(a^2+b^2\right)\) (*)
Ta có:
\(a+b=1\)
\(\Rightarrow\left(a+b\right)^2=1\)
\(\Rightarrow a^2+2ab+b^2=1\)
\(\Rightarrow a^2+b^2=1-2ab\left(1\right)\)
Ta lại có: \(ab=-2\left(2\right)\)
Thay (1) và (2) vào (*) ta được
\(=2.1\left(1-2ab-ab\right)-3\left(1-2ab\right)\)
\(=2\left(1-3ab\right)-3\left(1-2ab\right)\)
\(=2\left[1-3.\left(-2\right)\right]-3\left[1-2.\left(-2\right)\right]\)
\(=2.7-3.5\)
\(=29\)
d) \(x^3+y^3+3xy\)
\(=x^3+y^3+3xy\left(x+y\right)\) ( Vì x + y = 1 nên GTBT không đổi )
\(=\left(x+y\right)^3\)
\(=1\)
e) \(x^3-y^3-3xy\)
\(=x^3-y^3-3xy\left(x-y\right)\) ( Vì x - y = 1 nên GTBT không đổi )
\(=\left(x-y\right)^3\)
\(=1\)