Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hiếu Minh

1. Cho a,b,c ≠0 thỏa mãn: (a+b+c)2=a2+b2+c2

Rút gọn:   

\(M=\dfrac{a^2}{a^2+2bc}+\dfrac{b^2}{b^2+2ca}+\dfrac{c^2}{c^2+2ab}\)

2. Cho a+b+c=0

Rút gọn:

\(A=\dfrac{a^3+b^3+c^3-3abc}{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}\)

Lấp La Lấp Lánh
15 tháng 11 2021 lúc 19:29

Bài 1:

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)

\(\Leftrightarrow ab+bc+ac=0\Leftrightarrow bc=-ab-ac\)

\(\dfrac{a^2}{a^2+2bc}=\dfrac{a^2}{a^2+bc-ab-ac}=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}\)

CMTT: \(\left\{{}\begin{matrix}\dfrac{b^2}{b^2+2ca}=\dfrac{b^2}{\left(b-c\right)\left(b-a\right)}\\\dfrac{c^2}{c^2+2ab}=\dfrac{c^2}{\left(b-c\right)\left(a-c\right)}\end{matrix}\right.\)

\(M=\dfrac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=\dfrac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=1\)

Bài 2:

\(a^3+b^3+c^3-3abc=\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3abc-3a^2b-3ab^2\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)(do \(a+b+c=0\))

\(\Rightarrow A=\dfrac{0}{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}=0\)


Các câu hỏi tương tự
ILoveMath
Xem chi tiết
Anime
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
Xem chi tiết
Hồ Lê Thiên Đức
Xem chi tiết
dinh huong
Xem chi tiết
Phạm Tuấn Kiệt
Xem chi tiết
Dung Vu
Xem chi tiết
Dung Vu
Xem chi tiết