cho \(\Delta ABC\)nhọn ( AB < AC ) ; đường cao AH ; D , E , F lần lượt là trung điểm của AB , AC , BC ; Tính SBDEF và SDEFH biết HB=4cm , HC=6cm , AH=8cm
Cho \(\Delta ABC\) nhọn (\(AB< AC\)) có hai đường cao \(BM,CN\) (\(M\varepsilon AC;N\varepsilon AB\))
\(a\)) CM: \(\Delta AMB\) đồng dạng \(\Delta ANC\) rồi suy ra \(AM.AC=AN.AB\)
b) CM: \(\Delta AMN\) đồng dạng \(\Delta ABC\) rồi suy ra\(AMN=ABC\)
a: Xét ΔAMB vuông tại M và ΔANC vuông tạiN có
góc A chung
=>ΔAMB đồng dạng vơi ΔANC
=>AM/AN=AB/AC
=>AM*AC=AB*AN; AM/AB=AN/AC
b: Xét ΔAMN và ΔABC có
AM/AB=AN/AC
góc A chung
=>ΔAMN đồng dạng với ΔABC
=>góc AMN=góc ABC
cho \(\Delta\)ABC là \(\Delta\)nhọn, đường cao AH, vẽ HD \(\perp\) AB tại điểm D, vẽ HE \(\perp\) AC tại điểm E
a, chứng minh \(\Delta\) AHB ∞ \(\Delta\) ADH , \(\Delta\) AHC ∞ \(\Delta\) AEH
b, chứng minh AD.AB=AE.AC
c, Cho AB = 12cm, AC =15cm, BC = 18cm. tính độ dài đường phân giác KA của \(\Delta\) ABC
giúp mik vs ạ
a) Xét ΔAHB vuông tại H và ΔADH vuông tại D có
\(\widehat{DAH}\) chung
Do đó: ΔAHB\(\sim\)ΔADH(g-g)
a) Xét ΔAHC vuông tại H và ΔAEH vuông tại E có
\(\widehat{HAE}\) chung
Do đó: ΔAHC\(\sim\)ΔAEH(g-g)
Cho \(\Delta ABC\) (\(AB< AC\)) có ba góc nhọn, kẻ đường cao \(AH\) (\(H\) thuộc \(BC\)). Từ \(H\) kẻ \(HD\perp AB\) và \(HE\perp AC\) ( \(D\) thuộc \(AB\), \(E\) thuộc \(AC\) )
a) Cm: \(\Delta ADH\) đồng dạng \(AHB\) và \(\Delta AEH\) đồng dạng \(\Delta AHC\)
b) Cm: \(AD.AB=AE.AC\)
C) Tia phân giác góc \(BAC\) cắt \(DE\), \(BC\) lần lượt tại \(M,N\). Cm: \(\dfrac{MD}{ME}=\dfrac{NC}{NB}\)
a) ΔABC có đường cao AH. Chứng minh: AB^2 + AC^2 = BC^2 + CH^2 + 2AH^2
b) Cho ΔABC nhọn (AB > AC) có đường cao AH, E là điểm tùy ý trên AH
Chứng minh AB^2 - AC^2 = EB^2 - EC^2
c) Cho ΔABC có ba góc nhọn, AB = AC. Vẽ đường cao CH
Chứng minh AB^2 + BC^2 + CA^2 = BH^2 +2AH^2 + 3CH^2
a) Áp dụng định lí pytago vào ΔAHB vuông tại H, ta được
\(AB^2=AH^2+BH^2\)
Áp dụng định lí pytago vào ΔAHC vuông tại H, ta được
\(AC^2=AH^2+CH^2\)
Ta có: \(AB^2+AC^2=BH^2+CH^2+AH^2+AH^2=BH^2+CH^2+2\cdot AH^2\)
b) Áp dụng định lí pytago vào ΔABH vuông tại H, ta được
\(AB^2=AH^2+BH^2\)
Áp dụng định lí pytago vào ΔACH vuông tại H, ta được
\(AC^2=AH^2+HC^2\)
Ta có: \(AB^2-AC^2=AH^2+BH^2-AH^2-CH^2=BH^2-CH^2\)(1)
Áp dụng định lí pytago vào ΔEHB vuông tại H, ta được
\(EB^2=EH^2+HB^2\)
Áp dụng định lí pytago vào ΔEHC vuông tại H, ta được
\(EC^2=EH^2+HC^2\)
Ta có: \(EB^2-EC^2=EH^2+BH^2-EH^2-CH^2=BH^2-CH^2\)(2)
Từ (1) và (2) suy ra \(AB^2-AC^2=EB^2-EC^2\)(đpcm)
a)
+ Xét \(\Delta ABH\) vuông tại \(H\left(gt\right)\) có:
\(AB^2=AH^2+BH^2\) (định lí Py - ta - go) (1).
+ Xét \(\Delta ACH\) vuông tại \(H\left(gt\right)\) có:
\(AC^2=AH^2+CH^2\) (định lí Py - ta - go) (2).
Từ (1) và (2) \(\Rightarrow AB^2+AC^2=\left(AH^2+AH^2\right)+\left(BH^2+CH^2\right)\)
\(\Rightarrow AB^2+AC^2=AH^2+AH^2+BH^2+CH^2\)
\(\Rightarrow AB^2+AC^2=2AH^2+BH^2+CH^2\)
Hay \(AB^2+AC^2=BH^2+CH^2+2AH^2\left(đpcm\right).\)
Chúc bạn học tốt!
Cho \(\Delta ABC\) nhọn (AB < AC). Trên nửa mặt phẳng bờ BC không chứa điểm A, vẽ tia cX song song với AB. Trên tia Cx, lấy điểm D sao cho CD = AB.
a) Chứng minh \(\Delta ABC=\Delta DCB\)
b) Chứng minh AC // BD\
c) Kẻ \(AH\perp BC\) tại H, \(DC\perp BK\) tại K. Chứng minh AH = DK.
d) Gọi I là trung điểm của BC. Chứng minh I là trung điểm của AD.
Cho \(\Delta ABC\) nhọn, \(AB< AC\) , tia phân giác của \(\widehat{BAC}\) cắt cạnh \(BC\) tại \(E\). Trên cạnh \(AC\) lấy điểm \(F\) sao cho \(AF=AB\).
a) Chứng minh: \(\Delta AEB=\Delta AEF\)
b) M là giao điểm của BF và AE. Chứng minh: MB = MC, AE \(\perp\) BF tại M
c) Trên tia AB lấy điểm D sao cho AD = AC. Gọi K là trung điểm của CD. Chứng minh: 3 điểm A, E, K thẳng hàng.
a: Xét ΔAEB và ΔAEF có
AE chung
\(\widehat{BAE}=\widehat{FAE}\)
AB=AF
Do đó: ΔAEB=ΔAEF
b: Sửa đề: Chứng minh MB=MF
Ta có: ΔABE=ΔAFE
=>AB=AF
=>ΔABF cân tại A
Ta có: ΔABF cân tại A
mà AM là đường phân giác
nên M là trung điểm của BF và AM\(\perp\)BF
M là trung điểm của BF nên MB=MF
AM\(\perp\)BF tại M
=>AE\(\perp\)BF tại M
c: ta có: ΔABE=ΔAFE
=>\(\widehat{ABE}=\widehat{AFE}\)
Ta có: \(\widehat{ABE}+\widehat{DBE}=180^0\)(hai góc kề bù)
\(\widehat{AFE}+\widehat{CFE}=180^0\)(hai góc kề bù)
mà \(\widehat{ABE}=\widehat{AFE}\)
nên \(\widehat{EBD}=\widehat{EFC}\)
Ta có: AB+BD=AD
AF+FC=AC
mà AB=AF và AD=AC
nên BD=FC
Xét ΔEBD và ΔEFC có
EB=EF
\(\widehat{EBD}=\widehat{EFC}\)
BD=FC
Do đó: ΔEBD=ΔEFC
=>ED=EC
=>E nằm trên đường trung trực của DC(1)
ta có: AD=AC
=>A nằm trên đường trung trực của DC(2)
Ta có: KD=KC
=>K nằm trên đường trung trực của DC(3)
Từ (1),(2),(3) suy ra A,E,K thẳng hàng
Cho ∆ABC nhọn (AB < AC ) có AH là đường cao. Gọi E, F lần lượt là hình chiếu của điểm H lên cạnh AB, AC
a/ Chứng minh: AE.AB = AF.AC
b/. Chứng minh: \(\Delta AEF~\Delta ACB\)
a, Xét tg ABH vuông tại H có đg cao HE
\(AE\cdot AB=AH^2\left(1\right)\)
Xét tg ACH vuông tại H có đg cao HF
\(AF\cdot AC=AH^2\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow AE\cdot AB=AF\cdot AC\)
b, Xét tg AEF và tg ACB có
\(AE\cdot AB=AF\cdot AC\Rightarrow\dfrac{AE}{AC}=\dfrac{AF}{AB}\\ \widehat{A}.chung\)
Do đó \(\Delta AEF\sim\Delta ACB\left(c.g.c\right)\)
Cho \(\Delta ABC\)nhọn có AB=AC. Kẻ BD \(\perp\)AC tại D, kẻ \(CE\perp AB\) tại E.Chứng minh \(\Delta ABD=\Delta ACE\)
Cho ΔABC nhọn (AB < AC). Hai đường cao AD và BE cắt nhau tại H. C/m:
a) CH ⊥ AB tại I
b) C/m: ΔABE đồng dạng ΔACI. Cho AB = 10 cm; AC = 15 cm; CI = 9 cm. Tính BE
c) ΔHEA đồng dạng ΔHDB
d) IH.EC = EH.IB
e) ΔAEI đồng dạng ΔABC
g) CE.CA = CD.CB
h) BH.AD = AC.BD (gợi ý: trung gian)
Cho \(\Delta\)ABC nhọn, đường cao AH. Gọi M,N là hình chiếu của H trên AB; AC. Chứng minh:
a, \(\Delta\)MHA\(\varsigma\) \(\Delta\)HBA
b, AM.AB=AN.AC
c, Gọi I là trung điểm của AH. Tìm điều kiện của ABC để M, I, N thẳng hàng